

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-23/6851 - of 05/07/2023
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Hilti push-in anchor HKD
Product family to which the construction product belongs:	Deformation-controlled expansion anchor made of galvanized or stainless steel of sizes M6, M8, M10, M12, M16 and M20 for use in non-cracked concrete.
Manufacturer:	Hilti Aktiengesellschaft 9494 SCHAAN Principality of Liechtensten
Manufacturing plant(s):	Hilti Plants
This UK Technical Assessment contains:	20 pages including 3 Annexes which form an integral part of this assessment.
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601 Mechanical fasteners for use in concrete

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The Hilti push-in anchor HKD is a fastener made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fastener consists of an anchor body and an internal plug.

The fixture must be anchored with a fastening screw or threaded rod according to Annex B2.

The product description is given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment.

3.1. Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static action) Method A	See Annexes B3, C1 and C4
Characteristic resistance to shear load (static and quasi static action)	See Annexes C2 and C5
Displacements and Durability	See Annexes C3, C6 and B1
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2. Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Anchorages satisfy requirements for Class A1				
Resistance to fire	No performance assessed				

3.3. Health, hygiene and the environment (BWR 3)

Not relevant.

3.4. Safety and accessibility in use (BWR 4)

Not relevant.

3.5. Protection against noise (BWR 5)

Not relevant.

3.6. Energy economy and heat retention (BWR 6)

Not relevant.

3.7. Sustainable use of natural resources (BWR 7)

No performance assessed.

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1. System of assessment and verification of constancy of performance

According to UKAD No. 330232-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1. UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/registered address of the manufacturer of the product/ system
- Marking including date of Marking and the intended use as stated in the Designated technical specification
- Unique identification code of the product type
- The reference number of the Declaration of Performance
- The level or class of the performance declared
- The reference to the Designated technical specification applied
- UKTA number

On behalf of the British Board of Agrément

Gil

Date of Issue: 5 July 2023

Hardy Giesler Chief Executive Officer

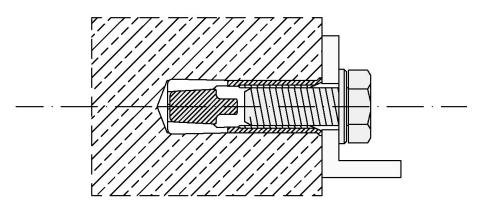
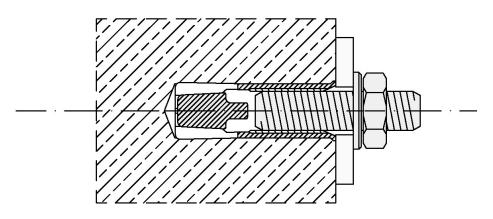
British Board of Agrément, 1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG

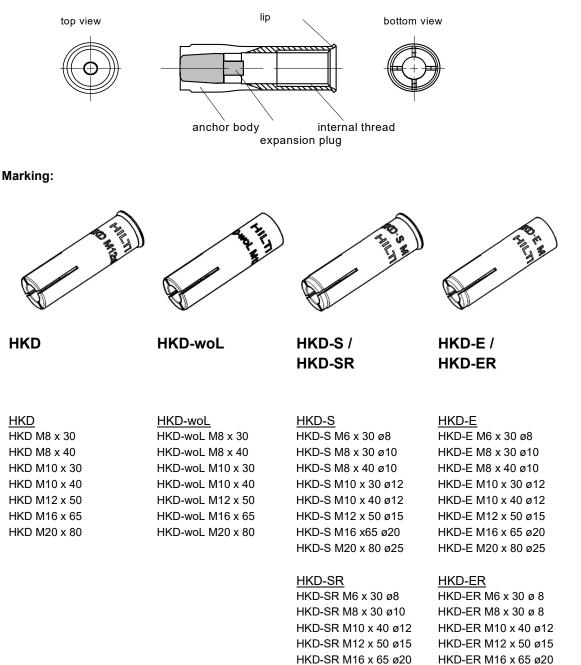
ANNEX A1 Product description Installed condition.

This annex applies to the product described in the main body of the UK Technical Assessment.

Installed condition.

Figure A1: Hilti push-in anchor HKD with screw


Figure A2: Hilti push-in anchor HKD with threaded rod, washer and nut

ANNEX A2 Product description Anchor types / Marking

This annex applies to the product described in the main body of the UK Technical Assessment.

Product description: Hilti push-in anchor HKD

HKD-SR M20 x 80 ø25

HKD-ER M20 x 80 ø25

ANNEX A3 Product description Identification after installation

This annex applies to the product described in the main body of the UK Technical Assessment.

Identification after installation

Each anchor can be identified with setting tool after installation.

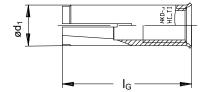
Size	Setting tool	Top view
HKD M8x30	HSD-G M8 x 25/30	
HKD M8x40	HSD-G M8 x 40	-
HKD M10x30	HSD-G M10 x 25/30	
HKD M10x40	HSD-G M10 x 40	
HKD M12x50	HSD-G M12 x 50	
HKD M16x65	HSD-G M16 x 65	-
HKD M20x80	HSD-G M20 x 80	

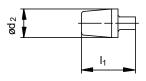
Identification HKD-E(R) and HKD-S(R)

Additional marking on end-face for M8x40 and M10x40

ANNEX A4 Product description Materials and dimensions

This annex applies to the product described in the main body of the UK Technical Assessment.


Materials and dimensions


Table A2: Materials

designation	material							
HKD; HKD-woL								
Anchor body	Cold-formed steel – galvanized to $\geq 5~\mu m$							
Expansion plug	Cold-formed steel							
HKD-S; HKD-E								
Anchor body	Steel Fe/Zn5 (galvanized \geq 5 $\mu m)$							
Expansion plug	Cold formed steel							
HKD-SR; HKD-ER								
Anchor body	Stainless steel of corrosion resistance class III according to							
Expansion plug	EN 1993-1-4:2006 + A1 : 2015 1.4401, 1.4404 or 1.4571 according to EN 10088-1 : 2014							

Anchor body

Expansion plug

Table A3: Dimensions

Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Anchor length	lg	[mm]	30	30	40	30	40	50	65	80
Anchor diameter	Ød₁	[mm]	8	9.95	9.95	11.8	12	14.9	19.8	24.8
Plug diameter	$\operatorname{Ød}_2$	[mm]	5	6.5	6.35	8.2	8.2	10.3	13.8	16.4
Plug length	l ₁	[mm]	15	12	16	12	16	20	29	30

ANNEX B1 Intended use. Specifications

This annex applies to the product described in the main body of the UK Technical Assessment.

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loading.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres in accordance with EN 206 : 2013 + A1 : 2016.
- Strength classes C20/25 to C50/60 according to EN 206 : 2013 + A1 : 2016.
- Uncracked concrete only.

• Table B1: Overview use categories and performance categories

Anchorages subject to:	HKD / HKD-woL / HKD-E(R) and HKD-S(R) with
	Threaded rod or screw
Hammer drilling	\checkmark
Static and quasi-static loading in uncracked concrete	M6 to M20 Tables : C1, C2, C3, C4, C5 and C6

Use conditions (Environmental conditions):

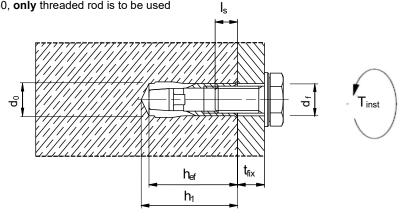
- Structures subject to dry internal conditions (zinc coated steel or stainless steel).
- For all other conditions according to EN 1993-1-4 : 2006 + A1 : 2015 corresponding to corrosion resistance classes Annex A4 Table A2 (stainless steels).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. the position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with: EN 1992-4 : 2018.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.
- Overhead applications are permitted.


ANNEX B2 Intended Use Installation parameters

This annex applies to the product described in the main body of the UK Technical Assessment.

нкр			M6x30	M8x30	M8x40	M10x30 ¹⁾	M10x40	M12x50	M16x65	M20x80
Nominal diameter of drill bit	d_0	[mm]	8	10	10	12	12	15	20	25
Diameter of thread	d	[mm]	6	8	8	10	10	12	16	20
Drill hole depth	h1	[mm]	32	33	43	33	43	54	70	85
Effective embedment depth	h _{ef}	[mm]	30	30	40	30	40	50	65	80
Thread engagement length	I _{s,max}	[mm]	12.5	14.5	17.5	12.7	18	23.5	30.5	42
Minimum screwing depth ⁽¹⁾	I _{s,min}	[mm]	6	8	8	10	10	12	16	20
Maximum torque moment	Tinst	[Nm]	4	8	8	15	15	35	60	100
Maximum diameter of clearance hole in the fixture	df	[mm]	7	9	9	12	12	14	18	22

Table B2: Installation parameters for HKD-S(R), HKD-E(R), HKD and HKD-woL

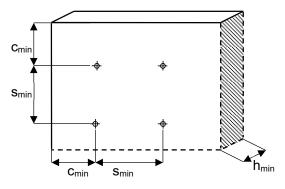
⁽¹⁾ With anchor size M10x30, **only** threaded rod is to be used

Requirements for fastening screw or threaded rod:

For anchors made of galvanized steel (HKD, HKD-woL, HKD-E and HKD-S) fastening screws or threaded rods of steel grade 4.6 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1 : 2013 must be specified. For anchors made of stainless steel (HKD-ER and HKD-SR) fastening screw or threaded rod of steel grade 70 according to EN ISO 3506 : 2020 must be specified.

Minimum screw depth $I_{s,min}$ **:** The length of the screw must be determined depending on thickness of fixture t_{fix} , admissible tolerances and available thread length $I_{s,max}$ as well as minimum screw depth $I_{s,min}$ according to Table B2

ANNEX B3 Intended Use Minimum spacing and minimum edge distance

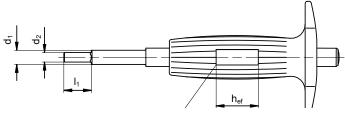

This annex applies to the product described in the main body of the UK Technical Assessment.

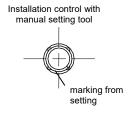
HKD-S(R), HKD-E(R)	M6x30 M8x30 M10x30	M8x40 M10x40	M12x50	M16x65	M20x80		
Minimum thickness of concrete member	h _{min}	[mm]	100	100	100	130	160
Minimum spacing	Smin	[mm]	60	80	125	130	160
Minimum edge distance	Cmin	[mm]	105	140	175	230	280

Table B3: Minimum spacing and minimum edge distance for HKD-S(R) and HKD-E(R)

Table B4: Minimum spacing and minimum edge distance for HKD and HKD-woL

HKD, HKD-woL	M8x30 M8x40 M10x30 M10x40		M12x50	M16x65	M20x80		
Minimum thickness of concrete member	h _{min}	[mm]	100	100	100	130	160
Minimum spacing s _{min}		[mm]	60	80	125	130	160
	for c ≥	[mm]	105	140	175	230	280
Minimum edge distance c _{min} [mm		[mm]	80	140	175	230	280
	for s≥	[mm]	120	80	125	130	160

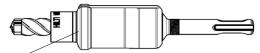

ANNEX B4 Intended Use Setting tools


This annex applies to the product described in the main body of the UK Technical Assessment.

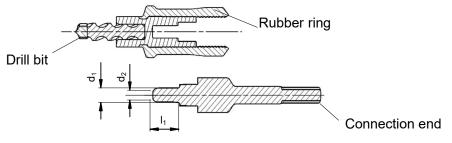
Setting tools HSD			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Diameter	\mathbf{d}_1	[mm]	7,5	9,5	9,5	11,5	11,5	14,5	18	22
Diameter	d ₂	[mm]	5	6,5	6,5	8	8	10,2	13,5	16,5
Length	l ₁	[mm]	15	18	28	18	24	30	36	50

Table B5: Dimensions of the setting tools

Manual setting tool HSD-G M. x hef (e.g. HSD-G M8 x 30)


anchor gauge with imprint M..x hef (assigned anchor) the recess length corresponds to the anchor length hef

Machine setting tool HSD-M M.. x hef (e.g. HSD-M M8 x 30)

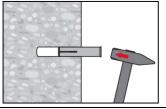


Marking HSD-M M..x h_{ef} (assigned anchor)

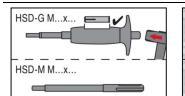
Machine setting tool HSD-TE CX M.. x hef (e.g. HSD-TE-CX M8 x 30)

Marking Hilti M..x hef (assigned anchor) and batch number

ANNEX B5 Intended Use Installation instructions

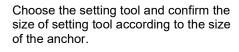

This annex applies to the product described in the main body of the UK Technical Assessment.

Installation instructions

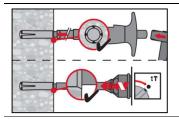

Hole drilling and cleaning

	Make a cylindrical hole.
CO M	Clean the drill hole.

Fastener setting

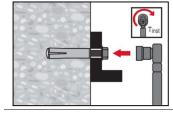


Install the anchor by hammering.



F

E


Setting check

HSD-G M...x...: Hammer on the top of setting tool until the four marks are visible on the lips of the anchor.

HSD-M M...x...: Set the anchor until the setting tool touches the rim of the anchor.

Loading the anchor

Apply the torque (check the values for T_{inst}) using a torque wrench.

ANNEX C1 Performances Characteristic resistance for Hilti push-in anchor HKD S(R) and HKD-E(R) under tension loads in uncracked concrete.

This annex applies to the product described in the main body of the UK Technical Assessment.

• Table C1: Characteristic resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R) under tension loads in uncracked concrete

HKD-S (R) HKD-E (R)			V6×30(2)	M8x30(2)	M8x40	M10×30(2)	M10x40	M12x50	M16x65	M20x80
			-			M	ž		ž	Ë
Installation safety factor	γinst		1.	.0	1.2			1.0		
Steel failure							1	1		
Steel grade 4.6	N _{Rk,s}	[kN]	8.0	14.6	14.6	23.2	23.2	33.7	62.8	98,0
Partial safety factor	γ _{Ms} ⁽¹⁾					2	.0			
Steel grade 5.6	N _{Rk,s}	[kN]	10.1	18.3	18.3	18.5	19.9	42.2	54.7	86,9
Partial safety factor	γ _{Ms} ⁽¹⁾			2.0		1.	49	2.0	1.	47
Steel grade 5.8	N _{Rk,s}	[kN]	10.1	17.4	17.4	18.5	19.9	35.3	54.7	86,9
Partial safety factor	γ _{Ms} ⁽¹⁾		1.50	1.	53		1.49		1.	47
Steel grade 8.8	N _{Rk,s}	[kN]	13.4	17.4	17.4	18.5	19.9	35.3	54.7	86,9
Partial safety factor	γ _{Ms} 1)			1.53			1.49		1.	47
Steel grade 70	N _{Rk,s}	[kN]	12.8	16.8	Versi	on not	21.1	37.3	64.2	102.0
Partial safety factor	γ _{Ms} 1)		1.8	83	avai	lable		1.	83	
Pullout failure										
Characteristic resistance C20/25	N _{Rk,p}	[kN]	8.1	8.1	9.0	8.1	12.4	17.4	25.8	35.2
		C30/37				1.:	22			
Increasing factors for N _{Rk,p}	ψc	C40/50				1.	41			
IOI INRK,p		C50/60				1.	58			
Concrete cone and split	ting failu	re								
Characteristic resistance to prevent splitting	N ⁰ Rk,sp	[kN]	8.1	8.1	9.0	8.1	12.4	17.4	25.8	35.2
Factor	k _{ucr}	[-]				11	.0			
Factor	k _{cr}	[-]			No pe	erformar	nce asse	essed		
Effective embedment depth	h _{ef}	[mm]	30(2)	30(2)	40	30(2)	40	50	65	80
Spacing	Scr,N	[mm]	90	90	120	90	120	150	195	240
Edge distance	C _{cr,N}	[mm]	45	45	60	45	60	75	97	120
Spacing	Scr,sp	[mm]	210	210	280	210	280	350	455	560
Edge distance	Ccr,sp	[mm]	105	105	140	105	140	175	227	280

⁽¹⁾ In the absence of other national regulations.

ANNEX C2 Performances Characteristic resistance for Hilti push-in anchor HKD S(R) and HKD-E(R) under shear loads in uncracked concrete.

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C2: Characteristic resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R) und	er
shear loads in uncracked concrete	

HKD-S (R) HKD-E (R)			M6x30 ⁽²⁾	M8x30 ⁽²⁾	M8x40	M10x30 ⁽²⁾	M10x40	M12x50	M16x65	M20x80
Steel failure without leve	er arm					1	1	1	1	1
Steel grade 4.6	V ⁰ Rk,s	[kN]	4.0	7.3	7.3	7.4	8.0	16.9	21.9	34.7
Partial safety factor	γ _{Ms} ⁽¹⁾			1.67		1.	25	1.67	1.	25
Steel grade 5.6	V ⁰ Rk,s	[kN]	5.0	7.0	7.0	7.4	8.0	14.1	21.9	34.7
Partial safety factor	γ _{Ms} ⁽¹⁾		1.67	1.	27			1.25		
Steel grade 5.8	V ⁰ Rk,s	[kN]	5.0	7.0	7.0	7.4	8.0	14.1	21.9	34.7
Partial safety factor	γ _{Ms} ⁽¹⁾		1.25	1.	27		•	1.25		
Steel grade 8.8	V ⁰ Rk,s	[kN]	5.3	7.0	7.0	7.4	8.0	14.1	21.9	34.7
Partial safety factor	γ _{Ms} ⁽¹⁾			1.27			•	1.25		
Steel grade 70	$V^0_{Rk,s}$	[kN]	6.4	8.4	Versio	on not	10.5	18.7	32.1	51.0
Partial safety factor	γ _{Ms} ⁽¹⁾		1.	52	avai	lable		1.	52	
Ductility factor	k 7	[-]				1	.0			
Steel failure with lever a	rm									
Steel grade 4.6	M^0 Rk,s	[Nm]	6	15	15	30	30	52	133	260
Partial safety factor	γ _{Ms} ⁽¹⁾					1.	67			
Steel grade 5.6	M ⁰ _{Rk,s}	[Nm]	8	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} ⁽¹⁾					1.	67			
Steel grade 5.8	M ⁰ Rk,s	[Nm]	8	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} ⁽¹⁾					1.	25			
Steel grade 8.8	M ⁰ Rk,s	[Nm]	12	30	30	60	60	105	266	519
Partial safety factor	γ _{Ms} ⁽¹⁾					1.	25			
Steel grade 70	M ⁰ Rk,s	[Nm]	11	26	Versio	on not	52	92	233	454
Partial safety factor	γ _{Ms} ⁽¹⁾		1.	56	avai	lable		1,	56	
Ductility factor	k 7	[-]				1	.0			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]				2	.0			
Concrete edge failure										
Effective length of anchor	lf	[mm]	30	30	40	30	40	50	65	80
External diameter of anchor	d _{nom}	[mm]	8	10	10	12	12	15	20	25

⁽¹⁾ In the absence of other national regulations.

ANNEX C3 Performance Displacements under tension load and under shear load for HKD-S(R) and HKD-E(R)

This annex applies to the product described in the main body of the UK Technical Assessment.

HKD-S(R) HKD-E(R)			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Tension load in C20/25 to C50/60 uncracked concrete	Ν	[kN]	3.3	3.3	3.6	3.3	5.1	7.1	12.6	17.2
Dianlacament	δ _{N0}	[mm]	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Displacement -	δ _{N∞}	[mm]	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2

Table C3: Displacements under tension load for HKD-S(R) and HKD-E(R)

Table C4: Displacements under shear load for HKD-S and HKD-E

HKD-S HKD-E			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20×80
Shear load in C20/25 to C50/60 uncracked concrete	V	[kN]	1.7	3.1	3.1	4.3	4.6	7.2	12.5	19.8
Dianlagoment	δvo	[mm]	0.35	0.35	0.40	0.35	0.40	0.45	0.75	0.75
Displacement -	δv∞	[mm]	0.50	0.50	0.60	0.50	0.60	0.70	1.1	1.1

Table C5: Displacements under shear load for HKD-SR and HKD-ER

HKD-SR HKD-ER			M6x30	M8x30	M10x40	M12x50	M16x65	M20×80
Shear load in C20/25 to C50/60 uncracked concrete	V	[kN]	1.7	3.9	4.9	8.8	15.1	24.0
Diaplacement	δνο	[mm]	0.35	0.45	0.45	0.55	0.9	0.9
Displacement	δv∞	[mm]	0.50	0.65	0.65	0.85	1.3	1.3

ANNEX C4 Performances Characteristic resistance for Hilti push-in anchor HKD and HKD-woL under tension loads in uncracked concrete.

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C6: Characteristic resistance for Hilti push-in anchor HKD and HKD-woL under tension loads in uncracked concrete.

loads in uncra	аскеа со	ncrete.			1				
HKD HKD-woL			M8x30 ⁽²⁾	M8x40	M10x30 ⁽²⁾	M10x40	M12x50	M16x65	M20x80
Installation safety factor	γinst		1.0	1.2			1.0		
Steel failure									
Steel grade 4.6	$N_{Rk,s}$	[kN]	14.6	14.6	19.9	22.1	33.7	62.8	98.0
Partial safety factor	γ_{Ms} ¹⁾		2	.0	1	.5		2.0	
Steel grade 5.6	N _{Rk,s}	[kN]	17.1	19.4	19.9	22.1	36.6	67.5	99.0
Partial safety factor	γ _{Ms} 1)					1.5			
Steel grade 5.8	N _{Rk,s}	[kN]	17.1	19.4	19.9	22.1	36.6	67.5	99.0
Partial safety factor	γ _{Ms} 1)					1.5			
Steel grade 8.8	N _{Rk,s}	[kN]	17.1	19.4	19.9	22.1	36.6	67.5	99.0
Partial safety factor	γ _{Ms} 1)					1.5			
Pullout failure									
Characteristic resistance C20/25	N _{Rk,p}	[kN]	8.1	9,0	8.1	12.4	17.4	25.8	35.2
		C30/37				1.22			
Increasing factors for NRK.p	ψC	C40/50				1.41			
		C50/60				1.58			
Concrete cone and split	ting failu	re							
Characteristic resistance to prevent splitting	$N^0_{Rk,sp}$	[kN]	8.1	9.0	8.1	12.4	17.4	25.8	35.2
Factor	k _{ucr}	[-]				11.0			
Factor	k _{cr}	[-]			No perfo	rmance a	assessed		
Effective embedment depth	h _{ef}	[mm]	30 (2)	40	30 (2)	40	50	65	80
Spacing	Scr,N	[mm]	90	120	90	120	150	195	240
Edge distance	Ccr,N	[mm]	45	60	45	60	75	97	120
Spacing	Scr,sp	[mm]	210	280	210	280	350	455	560
Edge distance	Ccr,sp	[mm]	105	140	105	140	175	227	280

⁽¹⁾ In the absence of other national regulations.

ANNEX C5 Performances Characteristic resistance for Hilti push-in anchor HKD and HKD-woL under shear loads in uncracked concrete.

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C7: Characteristic resistance for Hilti push-in anchor HKD and HKD-woL under shea	ar
loads in uncracked concrete	

loads in uncra	ickeu coi	ICIELE			1	1		-	
HKD HKD-woL			M8x30 ⁽²⁾	M8x40	M10x30 ⁽²⁾	M10x40	M12x50	M16x65	M20x80
Steel failure without leve	er arm							•	
Steel grade 4.6	V ⁰ Rk,s	[kN]	7.3	7.3	10.0	11.0	16.9	31.4	49
Partial safety factor	γ _{Ms} ⁽¹⁾		1.	67	1.	25		1.67	
Steel grade 5.6	V ⁰ Rk,s	[kN]	8.6	9.2	10.0	11.0	18.3	33.8	49.5
Partial safety factor	γ _{Ms} ⁽¹⁾		1.25	1.67			1.25		
Steel grade 5.8	V ⁰ Rk,s	[kN]	8.6	9.2	10.0	11.0	18.3	33.8	49.5
Partial safety factor	γ _{Ms} ⁽¹⁾					1.25			
Steel grade 8.8	V ⁰ Rk,s	[kN]	8.6	9.2	10.0	11.0	18.3	33.8	49.5
Partial safety factor	γ _{Ms} ⁽¹⁾					1.25			
Ductility factor	k 7	[-]				1.0			
Steel failure with lever a	rm								
Steel grade 4.6	M ⁰ Rk,s	[Nm]	15	15	30	30	52	133	260
Partial safety factor	γ _{Ms} ⁽¹⁾					1.67			
Steel grade 5.6	M ⁰ Rk,s	[Nm]	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} ⁽¹⁾					1.67			
Steel grade 5.8	M ⁰ Rk,s	[Nm]	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} ⁽¹⁾				1	1.25		•	1
Steel grade 8.8	M ⁰ Rk,s	[Nm]	30	30	60	60	105	266	519
Partial safety factor	γ _{Ms} ⁽¹⁾				1	1.25			
Ductility factor	k 7	[-]				1.0			
Concrete pry-out failure		ł							
Pry-out factor	k ₈	[-]				2,0			
Concrete edge failure		I							
Effective length of anchor	lf	[mm]	30	40	30	40	50	65	80
External diameter of anchor	d_{nom}	[mm]	10	10	12	12	15	20	25

⁽¹⁾ In the absence of other national regulations.

ANNEX C6 Performance Displacements under tension load and under shear load for HKD and HKD-woL

This annex applies to the product described in the main body of the UK Technical Assessment.

HKD HKD-woL			M8x30	M8x40	M10×30	M10x40	M12x50	M16x65	M20×80
Tension load in C20/25 to C50/60 uncracked concrete	Ν	[kN]	4.0	4.3	4.0	6.1	8.5	12.6	17.2
Diaplacement	δηο	[mm]	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Displacement -	δ _{N∞}	[mm]	0.3	0.3	0.3	0.3	0.3	0.2	0.2

Table C8: Displacements under tension load for HKD and HKD-woL

Table C9: Displacements under shear load for HKD and HKD-woL

HKD HKD-woL			M8x30	M8x40	M10×30	M10x40	M12×50	M16×65	M20×80
Shear load in C20/25 to C50/60 uncracked concrete	Ν	[kN]	3.1	3.1	4.3	4.6	7.2	12.5	19.8
Diaplacement	δνο	[mm]	0.35	0.40	0.35	0.40	0.45	0.75	0.75
Displacement –	δv∞	[mm]	0.50	0.60	0.50	0.60	0.70	1.1	1.1

British Board of Agrément, 1st Floor Building 3, Hatters Lane, Croxley Park Watford

WD18 8YG