

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-23/6698 of 05/07/2023
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Hilti screw anchor HUS4
Product family to which the construction product belongs:	Mechanical fastener for use in concrete
Manufacturer:	Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant(s):	Hilti plants
This UK Technical Assessment contains:	39 pages including 3 Annexes which form an integral part of this assessment.
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601 Mechanical fasteners for use in concrete

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The Hilti screw anchor HUS4 is an anchor in sizes 8, 10, 12, 14 and 16 mm made of galvanized or stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1. Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annexes B4 to B9, Annexes C1, C3 and C5
Characteristic resistance to shear load (static and quasi-static loading)	See Annexes C2, C4 and C5
Displacements (static and quasi-static loading)	See Annexes C15 and C16
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annexes C5 to C9 and C17

3.2. Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annexes C10 to C14

3.3. Health, hygiene and the environment (BWR 3)

Not relevant.

3.4. Safety and accessibility in use (BWR 4)

Not relevant.

3.5. Protection against noise (BWR 5)

Not relevant.

3.6. Energy economy and heat retention (BWR 6)

Not relevant.

3.7. Sustainable use of natural resources (BWR 7)

No performance assessed.

3.8. Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1. System of assessment and verification of constancy of performance

According to UKAD No. 330232-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1. UKCA marking for the product/ system must contain the following information:

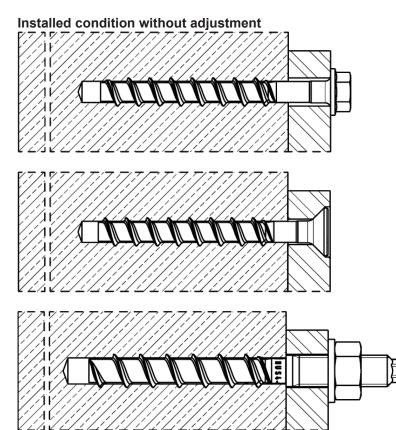
- Identification number of the Approved Body
- Name/registered address of the manufacturer of the product/ system
- Marking including date of Marking and the intended use as stated in the Designated technical specification
- Unique identification code of the product type
- The reference number of the Declaration of Performance
- The level or class of the performance declared
- The reference to the Designated technical specification applied
- UKTA number

On behalf of the British Board of Agrément

Λ

Date of Issue: 5 July 2023

Hardy Giesler Chief Executive Officer



British Board of Agrément, 1st Floor Building 3,

st Floor Building 3 Hatters Lane, Croxley Park Watford WD18 8YG

ANNEX A1 Product description Installed condition with and without adjustment

This annex applies to the product described in the main body of the UK Technical Assessment.

HUS4-H (Hexagon head configuration sizes 8, 10, 12, 14 and 16)

HUS4-HF (Hexagon head configuration sizes 8, 10, 14 and 16)

HUS4-HR (Hexagon head configuration sizes 6, 8, 10 and 14)

HUS4-C (Countersunk head configuration sizes 8 and 10)

HUS4-CR (Countersunk head configuration sizes 6, 8 and 10)

HUS4-A (Threaded rod connection sizes 10 with M12 and 14 with M16) HUS4-AF (Threaded rod connection sizes 10 with M12 and 14 with M16)

Installed condition with adjustment - hnom2, hnom3

HUS4-H (Hexagon head configuration sizes 8, 10, 12, and 14)

HUS4-HF (Hexagon head configuration sizes 8, 10, and 14)

HUS4-C (Countersunk head configuration sizes 8 and 10)

ANNEX A2 Product description HUS4 screw types

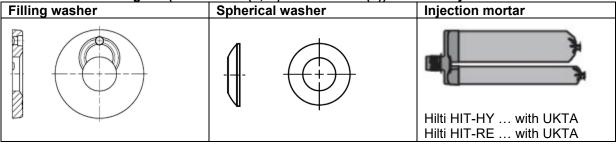
This annex applies to the product described in the main body of the UK Technical Assessment.

Table A1: Screw types

Hilti HUS4-H, sizes 8,10, 12, 14 and 16, hexagonal head configuration, galvanized carbon steel Hilti HUS4-HF, sizes 8,10, 14 and 16, hexagonal head configuration, carbon steel multilayer coating

Hilti HUS4-HR, sizes 6, 8, 10 and 14 hexagonal head configuration, stainless steel

Hilti HUS4-C, sizes 8 and 10, countersunk head configuration, galvanized carbon steel


Hilti HUS4-CR, sizes 6, 8 and 10 countersunk head configuration, stainless steel

Hilti HUS4-A, size 10 with external thread M12 and size 14 with external thread M16, galvanized carbon steel
 Hilti HUS4-AF, size 10 with external thread M12 and size 14 with external thread M16, carbon steel multilayer coating

ANNEX A3 Product description HUS4 screw types, Filling set and Hilti injection mortar Materials

This annex applies to the product described in the main body of the UK Technical Assessment.

Table A2: Hilti filling set (for HUS4-H (F, R) and HUS4-A (F)) and Hilti injection mortar

Table A3: Materials

Part	Material
HUS4-H(F), HUS4-C and HUS4-A(F) screw anchor	Carbon steel Rupture elongation A₅ ≤ 8%
HUS4-HR and HUS-CR	Stainless steel (A4 grade) Rupture elongation A5 > 8% Stainless steel of corrosion resistance class CRC III according to EN 1993-1-4:2006+A1:2015 1.4401 or 1.4404 according to EN 10088-1:2014
Hilti Filling set (carbon steel)	Filling washer: Carbon steel Spherical washer: Carbon steel
Hilti Filling set (stainless steel)	Corrosion resistance class CRC III according to EN 1993-1-4:2006+A1:2015 Filling washer: Stainless steel A4 according to ASTM A240/A 240M:2019 Spherical washer: Stainless steel A4 according to EN 10088-1:2014

ANNEX A4 Production description Fastener dimensions and head marking

This annex applies to the product described in the main body of the UK Technical Assessment.

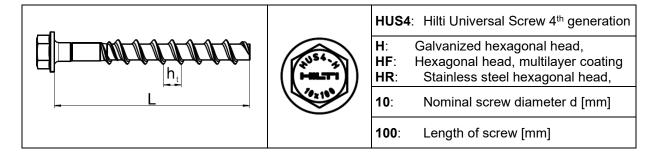
Table A4:	Filling set	dimensions

Filling set size			M10	M12	M16	M20	
Diameter	$d_{\nu s}$	[mm]	42	44	52	60	
Thickness	hvs	[mm]	5	5	6	6	
HUS4-H (F, R)	7777.		8	10	12 + 14	16	HILTI
HUS4-A (F)	11111	\mathcal{D}	-	10	14	-	d _{vs} h _{vs}

Table A5: Fastener dimensions and marking HUS4-A(F)

Fastener size HUS4-		A(F) 10		A(F) 14					
Nominal fastener diameter	d	[mm]		10	14				
Metric thread conection				M12		M16			
Pitch of the thread	ht	[mm]	10 14						
Naminal ambadmant danth			h _{nom1} h _{nom2}		h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h _{nom}	[mm]	55	75	85	65	80	115	
Effective embedment depth	h _{ef}	[mm]		h _{ef} = 0.8	5 * (h _{nom} –	- 0,5 * h _t) ≤ h _{ef,max}	ĸ	
Limits of effective embedment depth	h _{ef,max}	[mm]	68.0 91.8						
Length of screw minimum / maximum	L	[mm]	120 / 165 155 / 205					5	

	HUS4:	Hilti Un	iversal S	crew 4 th g	generatio	n	
	A: AF:		ized threa connecti			iting	
	10:	Nomina	al screw o	liameter	d [mm]		
	165:	Length of screw L [mm]					
	8:	Carbon	steel				
E.g. HUS4-A 10x165	К:	Length	identifica	tion HUS	64-A 10x	165	
	G	-	К	J	L	Ν	
	10x120	10x140	10x165	14x155	14x185	14x205	


ANNEX A5 Production description Fastener dimensions and head marking

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener size HUS4-		H(F) 8		н	H(F) 10		H 12			H(F) 14			H(F) 16			
Nominal fastener diameter	d	[mm]		8		10		12			14			1	6	
Pitch of the thread	ht	[mm]		8			10			12			14		13	.2
Nominal			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
embedment depth	\mathbf{h}_{nom}	[mm]	40	60	70	55	75	85	60	80	100	65	85	115	85	130
Effective embedment depth	h _{ef}	[mm]				h	_{ef} = 0	,85 *	(h _{nor}	n — 0	,5 * h	t) ≤ h	lef,max			
Limits of effective embedment depth	h _{ef,max}	[mm]		56.1			68.0		79.9		91.8			104	4.9	
Length of screw minimum / maximum	L	[mm]	4	5 / 15	50	60	0 / 30)5	70 / 150		75 / 150		100 /	205		

Table A6: Fastener dimensions and marking HUS4-H...

Fastener size HUS4-			HR 6		HR 8	HR 10		HR 14		
Nominal fastener diameter	d	[m m]	6		8	10	14			
Pitch of the thread	ht	[m m]	4.75		7.6	8.0		9.8		
Non-load bearing tip	h₅	[m m]	-		1.03	2.43		4.1		
Nominal			h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
embedment depth	h _{nom}	[m m]	55	60	80	70	90	70	110	
Effective embedment depth	h _{ef}	[m m]		ŀ	n _{ef} = 0.85 * (h _{nom} – 0	0,5 * h _t – h _s) ≤ h _€	ef,max			
Limits of effective embedment depth	h _{ef,ma} x	[m m]	45		64	71		86		
Length of screw minimum / maximum	L	[m m]	60 / 70	6	5 / 105	80 / 135				

ANNEX A6 Production description Fastener dimensions and head marking

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener size HUS4-		C 8		C 10						
Nominal fastener diameter	d	[mm]		8			10			
Pitch of the thread	ht	[mm]		8			10			
Nominal ambadmant danth			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth	h _{nom}	[mm]	40 60 70			55	75	85		
Effective embedment depth	h _{ef}	[mm]		h _{ef} = 0.8	5 * (h _{nom}	– 0,5 * ht) ≤ h _{ef,max}	ĸ		
Limits of effective embedment depth	h _{ef,max}	[mm]	56.1 68.0							
Length of screw minimum / maximum	L	[mm]	55 / 85 70 / 120							

Table A7: Fastener dimensions and marking HUS4-C...

Fastener size HUS4-	Fastener size HUS4-			CR 8		CR 10	
Nominal fastener diameter	d	[mm]	6	8	3	10	
Pitch of the thread	ht	[mm]	-	7	7.6		0
Non-load bearing tip	hs	[mm]	-	1.	03	2.43	
Nominal ambadment denth			h _{nom2}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	55	60	80	70	90
Effective embedment depth	h _{ef}	[mm]	h _{ef}	= 0,85 * (h _r	nom – 0,5 * h	n _t – h _s) ≤ h _{ef}	,max
Limits of effective embedment depth	h _{ef,max}	[mm]	45 64 71				1
Length of screw minimum / maximum	L	[mm]	60 / 70	65 / 95		75 / 105	

\bigcirc	HUS4:	Hilti Universal Screw 4th generation
	C: CR:	Galvanized ountersunk head, Stainless steel ountersunk head,
	10:	Nominal screw diameter d [mm]
	100 :	Length of screw L [mm]

ANNEX B1 Intended use Specifications

This annex applies to the product described in the main body of the UK Technical Assessment.

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings
- Seismic action for performance categories C1 and C2 for HUS4-H(F)/-C/-A(F) (carbon steel screw)
- Seismic action for performance category C1: HUS4-HR/-CR (stainless steel screw)
- Fire exposure

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2010+A1:2016.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Anchorages subject to dry internal conditions: all screw types
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015
 - Stainless steel according to Annex A3 Table A3, screw types HUS4-HR/-CR: CRC III

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055 edition February 2018.
- EN 1992-4:2018 and EOTA Technical Report TR 055 edition February 2018.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener (HUS4-H (F, R) and HUS4-C/-CR) must be supported on the fixture and is not damaged.
- Hilti filling set is suitable for HUS4-H (F, R) and HUS4-A (F)

ANNEX B2 Intended use Specifications

This annex applies to the product described in the main body of the UK Technical Assessment.

Specifications of intended use: Drilling and cleaning for HUS4 carbon steel Table B1: Static and quasi-static loading for HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F) carbon steel			Fastener size and embedment depth h _{nom}
Cracked and uncrackee	d concrete		
Hammer drilling (HD) ⁽¹⁾	Cleaned	~~~~	Sizes 8 to 16 at all h _{nom}
	Not cleaned	(متعتد)	Sizes 8 to 14 at all h _{nom}
Hammer drilling with Hilti hollow drill bit		Sizes 12 and 14 at all h_{nom}	
Uncracked concrete			
Diamond coring (DD) DD30-W handheld and v DD-EC1 handheld	vith stand	€ ♦	Sizes 10 to 14 at hnom3

⁽¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 14 at hnom2+3

Table B2: Seismic performance category C1 for HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F) carbon steel			Fastener size and embedment depth h _{nom}
Hammer drilling (HD) ⁽¹⁾	Cleaned		Sizes 8 to 14 at h _{nom2+3} Size 16 at h _{nom1+2}
5()	Not cleaned		Sizes 8 to 14 at h _{nom2+3}
Hammer drilling with Hilti hollow drill bit TE-CD (HDB) ⁽¹⁾			Sizes 12 and 14 at h _{nom2+3}

 $^{(1)}$ Adjustment according to Annex B11 is possible for sizes 8 to 14 at h_{nom2+3}

Table B3: Seismic performance category C2 for HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F) carbon steel			Fastener size and embedment depth h _{nom}		
Hommor drilling (HD) (1)	Cleaned	~~~~	Sizes 8 to 14 at h _{nom3}		
Hammer drilling (HD) ⁽¹⁾	Not cleaned	(مَتَعَتَّ	Sizes 8 to 14 at hnom3		

 $^{(1)}$ Adjustment according to Annex B11 is possible for sizes 8 to 14 at h_{nom3}

Table B4: Static and quasi-static loading under fire exposure for HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F) car	bon steel	Fastener size and embedment depth h _{nom}	
Hommor drilling (HD) (1)	Cleaned		Sizes 8 to 16 at all h _{nom}
Hammer drilling (HD) ⁽¹⁾	Not cleaned		Sizes 8 to 14 at all h _{nom}
Hammer drilling with Hilti hollow drill bit TE-CD (HDB) ⁽¹⁾			Sizes 12 and 14 at all h_{nom}

 $^{(1)}$ Adjustment according to Annex B11 is possible for sizes 8 to 14 at h_{nom2+3}

ANNEX B3 Intended use Specifications

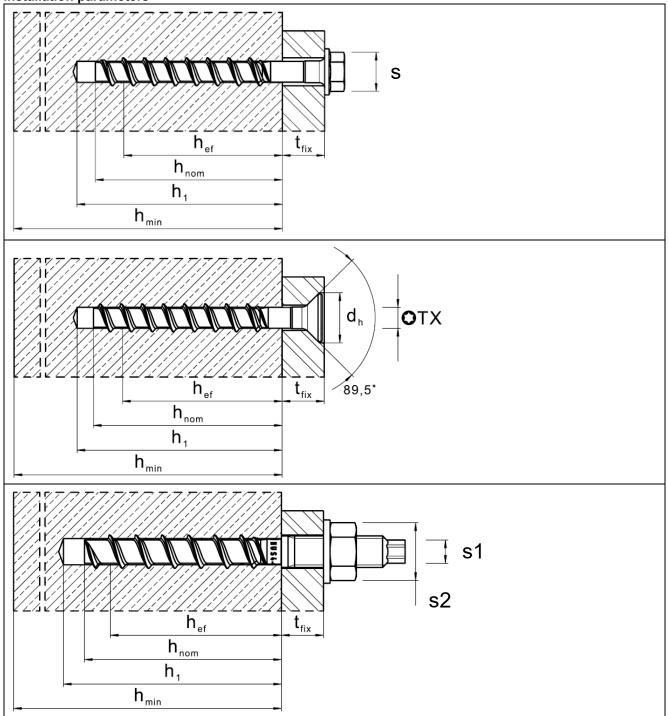
This annex applies to the product described in the main body of the UK Technical Assessment.

Specifications of intended use: Drilling and cleaning for HUS4 stainless steel Table B5: Static and quasi-static loading for HUS4-HR/-CR

HUS4-HR/-CR stainless steel			Fastener size and embedment dept h _{nom}			
Cracked and uncracked concrete						
Hammer drilling (HD)	Cleaned Not cleaned	- (2000)	Sizes 6 to 14 at all hnom			

Table B6: Seismic performance category C1 for HUS4-HR/-CR

HUS4-HR/-CR stainless steel			Fastener size and embedment depth h _{nom}		
Hommor drilling (HD)	Cleaned		Sizes 8 to 14 at h _{nom2}		
Hammer drilling (HD)	Not cleaned	لتتت	Sizes 8 to 14 at hnom2		


Table B7: Static and quasi-static loading under fire exposure for HUS4-HR/-CR

HUS4-HR/-CR stainless	s steel	Fastener size and embedment depth h _{nom}		
	Cleaned	Sizes 6 to 14 at all hnom		
Hammer drilling (HD)	Not cleaned	Sizes 6 to 14 at all hnom		

ANNEX B4 Intended use Installation parameters

This annex applies to the product described in the main body of the UK Technical Assessment.

Installation parameters

ANNEX B5 Intended use Installation parameters

This annex applies to the product described in the main body of the UK Technical Assessment.

Table B8: Installation parameters HUS4-8 and 10

Fastener size HUS4			8			10		
Туре				H(F), C		Н	(F), C, A(F)
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	40	60	70	55	75	85
Nominal drill hole diameter	do	[mm]		8			10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]		8.45			10.45	
Cutting diameter of diamond core bit	d _{cut} ≤	[mm]		-			9.9	
Clearance hole diameter through setting	d _f min max	- [mm]		11 12			13 14	
Clearance hole diameter pre setting (A-type)	d _f ≤	[mm]		-			14	
Wrench size (H, HF-type)	S	[mm]		13			15	
Wrench size for hex head (A-type)	s1	[mm]		-			8	
Wrench size for nut (A-type)	s2	[mm]		-		19		
Maximum installation torque (A-type)	max T _{inst}	[Nm]		-		40		
Torx size (C-type)	ТХ	-		45		50		
Diameter of countersunk head	d _h	[mm]		18		21		
Depth of drill hole for cleaned hole hammer drilling, diamond coring or for uncleaned hole when drilling upwards	h₁ ≥	[mm]	(h _{nom} + 50 70 80		+ 10 mm) 65 85 95			
						mm) + 2 * d ₀		
Depth of drill hole for uncleaned hole hammer drilling in wall and floor position	h₁ ≥	[mm]	66	86	96	85	105	115
Depth of drill hole (with adjustability) for					(h _{nom} +	- 20 mm)		
cleaned hole hammer drilling, diamond coring or for uncleaned hole when drilling upwards	h₁ ≥	[mm]	-	80	90	-	95	105
Depth of drill hole (with adjustability) for				(h	Inom + 20	mm) + 2 '	* d 0	
uncleaned hole hammer drilling in wall and floor position	h₁ ≥	[mm]	-	96	106	-	115	125
·					(h₁ +	30 mm)		
Minimum thickness of concrete member	h _{min} ≥	[mm]	80	100	120	100	130	140
Minimum spacing	S _{min} ≥	[mm]	35			40		
Minimum edge distance	C _{min} ≥	[mm]		35			40	
Hilti Setting tool ⁽¹⁾				6AT-A22 -22 1/2" (SIV SI SIW 8	6AT-A22 V 22T-A 1 W 6-22 1/ 3-22 1/2" (V 9-A22 3	/2" /2" gear 1

ANNEX B6 Intended use Installation parameters

This annex applies to the product described in the main body of the UK Technical Assessment.

Table B9: Installation parameters HUS4-12 and 14

Fastener size HUS4				12			14		
Туре				н			H(F), A(F)	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h _{nom}	[mm]	60	80	100	65	85	115	
Nominal drill hole diameter	d ₀	[mm]		12			14		
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12.50			14.50		
Cutting diameter of diamond core bit	d _{cut} ≤	[mm]		12.2			-		
Clearance hole diameter through setting	d _f min max	- [mm]		16			18		
Clearance hole diameter pre setting (A-type)	d _f ≤	[mm]		-			18		
Wrench size (H, HF-type)	S	[mm]		17			21		
Wrench size for hex head (A-type)	s1	[mm]		-		12			
Wrench size for nut (A-type)	s2	[mm]		-		24			
Maximum installation torque (A-type)	max T _{inst}	[Nm]		-			80		
Depth of drill hole for cleaned hole	L \	[]		(h _{nom} + 1			10 mm)		
hammer drilling, diamond coring or for uncleaned hole when drilling upwards	h₁≥	[mm]	70	90	110	75	95	125	
Depth of drill hole for uncleanded hole	h₁ ≥	[mm]		(h _{nom} + 10 mm) + 2 * d ₀					
hammer drilling in wall and floor position	II <u>1</u> ≤	[mm]	94	114	134	103	123	153	
Depth of drill hole (with adjustability) for					(h _{nom} +	20 mm)			
cleaned hole hammer drilling, diamond coring or for uncleaned hole when drilling upwards	h₁ ≥	[mm]	-	100	120	-	105	135	
Depth of drill hole (with adjustability) for				(h _{nom} + 20 mm)			ı) + 2 * d ₀		
uncleaned hole hammer drilling in wall and floor position	n₁ ≥	[mm]	-	124	144	-	133	163	
	1 5	r			(h1 + 3	30 mm)			
Minimum thickness of concrete member	h _{min} ≥	[mm]	110	130	150	120	160	200	
Minimum spacing	s _{min} ≥	[mm]	50			60			
Minimum edge distance	C _{min} ≥	[mm]		50			60		
Hilti Setting tool ⁽¹⁾			SIW 22T-A 1/2" SIW 6-22 1/2" SIW 8-22 1/2" SIW 9-A22 3/4"		SIW 22T-A 1/2" SIW 6-22 1/2" SIW 8-22 1/2" SIW 9-A22 3/4"				

ANNEX B7 Intended use Installation parameters

This annex applies to the product described in the main body of the UK Technical Assessment.

Table B10: Installation parameters HUS4-16

Fastener size HUS4			1	6		
Туре			H(F)			
			h _{nom1}	h _{nom2}		
Nominal embedment depth	h _{nom}	[mm]	85	130		
Nominal drill hole diameter	d ₀	[mm]	1	6		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	16	,50		
Clearance hole diameter through setting	d _f ≤	[mm]	20			
Wrench size	s	[mm]	24			
Depth of drill hole for cleaned hole	b. >	[mm]	(h _{nom} +	10 mm)		
hammer drilling or for uncleaned hole when drilling upwards	h₁ ≥	[mm]	95	140		
Minimum thickness of concrete member	h _{min} ≥	[mm]	130	195		
Minimum spacing	S _{min} ≥	[mm]	9	0		
Minimum edge distance	C _{min} ≥	[mm]	65			
Hilti Setting tool ⁽¹⁾	Setting tool ⁽¹⁾			T-A 1/2" 22 1/2" 22 1/2" A22 3/4"		

ANNEX B8 Intended use Installation parameters

This annex applies to the product described in the main body of the UK Technical Assessment.

$\frac{1}{d_0}$ $\frac{1}{d_f} \le \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	[mm] [mm] [mm] [mm] [mm]	HR, CR hnom1 55 6 6.40 9 13	h _{nom1} 60 8.4 1	2
d_0 $d_{cut} \le$ $d_f \le$ s TX	[mm] [mm] [mm] [mm]	55 6 6.40 9	60 8 1	80 3 45 2
d_0 $d_{cut} \le$ $d_f \le$ s TX	[mm] [mm] [mm] [mm]	6 6.40 9	8.4 1	3 45 2
d _{cut} ≤ d _f ≤ s TX	[mm] [mm]	6.40 9	8.4	45 2
d _f ≤ S TX	[mm] [mm]	9	1	2
s TX	[mm]			
ГХ		13	1	
	[-]			3
_		30	4	5
dh	[mm]	11	1	8
	[mm]	(h _{nom} +	· 10mm)	
1ן ≥	[mm] -	65	70	90
	[mm]	(h _{nom} + 10 i	mm) + 2 * d₀	
11 ≤		77	86	106
	F	(h ₁ + 3	30 mm)	
ז _{min} ≥	[mm] –	100	100	120
s _{min} ≥	[mm]	35	45	60
C _{min} ≥	[mm]	35	45	60
		SIW 6AT-A22 1/2" gear 3	SIW 22 SIW 6AT	-A22 1/2"
		n _{min} ≥ [mm] -	$\begin{array}{c c} h_{1} \geq & [mm] \\ \hline & & (h_{nom} + 10) \\ \hline & & 77 \\ \hline \\ h_{min} \geq & [mm] \\ \hline & & (h_{1} + 3) \\ \hline &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table B11: Installation parameters HUS4-HR/-CR 6 and 8

ANNEX B9 Intended use Installation parameters

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener size HUS4			1	0	1	4
Туре			HR,	CR	н	R
			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth	h _{nom}	[mm]	70	90	70	110
Nominal drill hole diameter	d_0	[mm]	1	0	1	4
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10.	.45	14	.50
Clearance hole diameter	d _f ≤	[mm]	1	4	1	8
Wrench size (H-type)	s	[mm]	1	5	2	1
Torx size (C-type)	ТΧ	[-]	5	0		-
Diameter of countersunk head	dh	[mm]	2	1		-
Depth of drill hole for cleaned hole	L N	[]		(h _{nom} +	10mm)	
hammer drilling, diamond coring or for uncleaned hole when drilling upwards	h₁≥	[mm] -	80	100	80	120
Depth of drill hole for uncleaned hole	h₁ ≥	[mm]		(h _{nom} + 10 r	mm) + 2 * d ₀	
hammer drilling in wall and floor position	111 <	[mm] -	100	120	108	148
Installation Torque	Tinst	[Nm]	4	5	6	5
Minimum thickness of concrete member	h _{min} ≥	[mm]	120	140	140	160
Minimum spacing	s _{min} ≥	[mm]	5	0	6	0
Minimum edge distance	C _{min} ≥	[mm]	5	0	6	0
Hilti Setting tool ⁽¹⁾			SIW 22 SIW 6AT gea	-A22 1/2"		T-A 1/2" 1/2" gear 2 1/2" gear 1
			SIW 6-22	1/2" gear 2	SIW 9-A	A22 3/4"

Table B12: Installation parameters HUS4-HR/-CR 10 and 14

ANNEX B10 Intended use Installation instructions

This annex applies to the product described in the main body of the UK Technical Assessment.

Installation instructions	
Hole drilling and cleaning	
Hammer drilling (HD) all sizes	for carbon and stainless steel screw types (size 16 with cleaning only)
	Mark drilling depth h₁ for pre or through installation. For details of drilling depth h₁, see Tables B5 to B9.
	Cleaning needed in downward and horizontal installation direction with drill hole depth. $h_1 = h_{nom} + 10 \text{ mm}$
	No cleaning is allowed in upward installation direction. No cleaning is allowed in downward and horizontal installation direction when 3x ventilation ⁽¹⁾ after drilling is executed. Drill hole depth $h_1 = h_{nom} + 10 \text{ mm} + 2 \text{ * } d_0$ ⁽¹⁾ Moving the drill bit in and out of the drill hole three times after the recommended drilling depth h_1 is achieved. This procedure must be done with both revolution and hammer functions activated in the drilling machine. For more details read the relevant installation instruction (MPII).
Hammer drilling with Hilti hollo	ow drill bit (HDB) TE-CD sizes 12 and 14 for carbon steel screw types
	No cleaning needed. h1 = h _{nom} + 10 mm
Diamond coring with DD-EC1	or DD-30W sizes 10 to 14 for carbon steel screw types
	Cleaning needed in all installation directions. $h_1 = h_{nom} + 10 \text{ mm}$

ANNEX B11 Intended use Installation instructions

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener setting without adjust	stment
Setting by impact screw driver	
	Setting parameters listed in Tables B5 to B7.
Setting check	
Fastener setting with adjustm	ent for carbon steel screw types
Adjusting process	
max. 10mm	A screw can be adjusted a maximum of two times. The total allowed thickness of shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equal to h_{nom2} or h_{nom3} .
Fastener setting with Hilti fillin	ng set
Injection of Hilti HIT mortar an	d curing time
	Fill the annular gap between screw and fixture with 1-3 strokes of a Hilti injection mortar HIT-HY or HIT-RE Follow the installation instructions supplied with the respective Hilti injection mortar. After required curing time t _{cure} the fastening can be loaded.

ANNEX C1 Performances Essential characteristics under static and quasi-static load in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C1: Essential characteristics under static and quasi-static load in concrete for HUS4 carbon steel size 8 and 10

Fastener size HUS	4				8			10	
Туре					H(F), C		н	(F), C, A(F)
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedmer	nt depth	h _{nom}	[mm]	40	60	70	55	75	85
Adjustment									
Total maximum thic layers	kness of adjustment	t _{adj}	[mm]	-	10	10	-	10	10
Maximum number o	f adjustments	Na	[-]	-	2	2	-	2	2
Steel failure for ter	nsion load								
Characteristic resist	ance	N _{Rk,s}	[kN]		36.0			55.0	
Partial factor		γ _{Ms} , ^{N (1)}	[-]			1	.5		
Pull-out failure									
Characteristic resist concrete C20/25	ance in uncracked	N _{Rk,p}	[kN]		≥ N ⁰ Rk, ^{c (3)})	13	22	≥ N ⁰ _{Rk,} c (3)
Characteristic resistance in cracked concrete C20/25		N _{Rk,p}	[kN]	5.5 ≥ N ⁰ _{Rk,c} ⁽³⁾					
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} *$		Ψc	[-]			(f _{ck} /2	20) ^{0,5}		
Concrete cone and	I splitting failure								
Effective embedmer	nt depth	h _{ef} ⁽²⁾	[mm]	30.6	47.6	56.1	42.5	59.5	68.0
Contox for	Uncracked	Kucr.N	[-]			11	.0		
Factor for	Cracked	k _{cr.N}	[-]			7	.7		
Concrete cone	Edge distance	C _{cr.N}	[mm]			1.5	h _{ef}		
failure	Spacing	Scr.N	[mm]			3	h _{ef}		
Characteristic resist	ance	N^0 Rk.sp	[kN]			NF	Rk,p		
Colitting follows	Edge distance	C _{cr.sp}	[mm]		1.5 h _{ef}			1.65 h _{ef}	
Splitting failure	Spacing	Scr.sp	[mm]		3 h _{ef}		3.3 h _{ef}		
Installation factor		γinst	[-]		1.0		1.2 1.0		.0

⁽¹⁾ In absence of other national regulations.

⁽²⁾ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t)$ ⁽³⁾ N⁰_{Rk.c} according to EN 1992-4:2018

ANNEX C2 Performances Essential characteristics under static and quasi-static load in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C1 continued

Fastener size HUS4				8			10	
Туре				H(F), C		н	(F), C, A(F)
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	40	60	70	55	75	85
Steel failure for shear load								
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	18	3.8	21.9	28	3.8	32.0
Partial factor	γ _{Ms,V} ⁽¹⁾	[-]			1.	25		
Ductility factor	k 7	[-]			0	.8		
Characteristic resistance	$M^0_{Rk,s}$	[Nm]		32			64	
Concrete pry-out failure								
Pry-out factor	k ₈	[-]	1.0	2	.0	1.0	2	.0
Concrete edge failure								
Effective length of fastener	lf	[mm]	40	60	70	55	75	85
Outside diameter of fastener	d _{nom}	[mm]		8	•		10	•

⁽¹⁾ In absence of other national regulations.

ANNEX C3 Performances Essential characteristics under static and quasi-static load in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C2: Essential characteristics under static and quasi-static load in concrete for HUS4 carbon steel size 12 to 16

Fastener size HUS4					12			14		1	6
Туре					н		н	(F), A(F)	H	(F)
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedment de	pth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Adjustment											
Total maximum thicknes layers	ss of adjustment	t _{adj}	[mm]	-	10	10	-	10	10	-	-
Maximum number of ad	justments	Na	[-]	-	2	2	-	2	2	-	-
Steel failure for tensio	n load										
Characteristic resistanc	е	N _{Rk,s}	[kN]		79.0			101.5		10	7.7
Partial factor		γ _{Ms,N} ⁽¹⁾	[-]				1	.5			
Pull-out failure											
Characteristic resistanc concrete C20/25	e in uncracked	N _{Rk,p}	[kN]			≥ N ⁰	Rk,c ⁽³⁾			22	46
Characteristic resistanc concrete C20/25	e in cracked	$N_{Rk,p}$	[kN]	10		≥	N ⁰ Rk,c	(3)		16	32
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} * \psi_c$		Ψc	[-]				(f _{ck} /2	20) ^{0,5}			
Concrete cone and sp	litting failure										
Effective embedment de	epth	h _{ef} ⁽²⁾	[mm]	45.9	62.9	79.9	49.3	66.3	91.8	66.6	104.9
E. duri fur	Uncracked	k _{ucr,N}	[-]				11	0.1			
Factor for	Cracked	k _{cr,N}	[-]				7	.7			
Concrete cone failure	Edge distance	Ccr,N	[mm]				1.5	h _{ef}			
	Spacing	S _{cr,N}	[mm]				3	h _{ef}			
Characteristic resistanc	e	$N^0_{Rk,sp}$	[kN]				Nr	Rk,p			
Splitting failure	Edge distance	Ccr,sp	[mm]		1.65 h₌	f			1.60 h₀	f	
	Spacing	S _{cr,sp}	[mm]		3.30 h _e	f			3.20 h _e	f	
Installation factor		γinst	[-]				1	.0			

⁽¹⁾ In absence of other national regulations.

⁽²⁾ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t)$ ⁽³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

ANNEX C4 Performances Essential characteristics under static and quasi-static load in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C2 continued

			12			14		1	6
			н		н	(F), A(F)	H	(F)
		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
h _{nom}	[mm]	60	80	100	65	85	115	85	130
									•
V ⁰ Rk,s	[kN]	38	3.9	44.9	55	6	62	65.1	73.1
γ _{Ms,V} ⁽¹⁾	[-]				1.	25			•
k 7	[-]				0	.8			
M ⁰ Rk,s	[Nm]		120			186		24	40
k ₈	[-]				2	.0			
l _f	[mm]	60	80	100	65	85	115	85	130
d _{nom}	[mm]		12	•		14	•	1	6
	V ⁰ Rk,s γMs,v ⁽¹⁾ k7 M ⁰ Rk,s k8	V ⁰ _{Rk,s} [kN] γ _{Ms,V} ⁽¹⁾ [-] k ₇ [-] M ⁰ _{Rk,s} [Nm] k ₈ [-] l _f [mm]	h _{nom} [mm] 60 V ⁰ _{Rk,s} [kN] 38 γMs,V ⁽¹⁾ [-] 4 k ₇ [-] 4 M ⁰ _{Rk,s} [Nm] 4 Image: state s	$\begin{array}{c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	H H(F), A(F) hnom hnom1 hnom3 hnom1 hnom3 hnom3 hnom [mm] 60 80 100 65 85 115 N_{nom} [mm] 60 80 100 65 85 115 $V^{0}_{Rk,s}$ [kN] 38.9 44.9 55 62 $\gamma_{Ms,V}^{(1)}$ [-] $\cdot \cdot $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

⁽¹⁾ In absence of other national regulations.

ANNEX C5 Performances Essential characteristics under static and quasi-static load in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

<u>for HUS4 stainless s</u> Fastener size HUS4				6		8	1	0	1	4
Type				HR, CR		, CR	HR,			R
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment	depth	h _{nom}	[mm]	55	60	80	70	90	70	110
Steel failure for tens	•									
Characteristic resista	nce	N _{Rk,s}	[kN]	24.0	34	4.0	52	2.6	10	2.2
Partial factor		γ _{Ms,N} ⁽¹⁾	[-]				1.4		l	
Characteristic resista	nce	V _{Rk,s}	[kN]	17.0	26	5.0	33	3.0	55.0	77.0
Partial factor		γ _{Ms,V} ⁽¹⁾	[-]				1.5			
Ductility factor		k 7	[-]				1.0			
Characteristic resista	nce	M ⁰ Rk,s	[Nm]	19	3	6	6	6	19	93
Pull-out failure					1					
Characteristic resistat concrete C20/25	nce in cracked	N _{Rk,p}	[kN]	5	8.5	15	12	16	12	25
Characteristic resista concrete C20/25	nce in uncracked	N _{Rk,p}	[kN]	9	12	16	16	25	≥N ⁰ F	Rk,c ⁽²⁾
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} * \psi$	с	Ψc	[-]			(f	_{ck} /20) ^{0,5}			
Concrete cone and	splitting failure									
Effective anchorage of	lepth	h _{ef}	[mm]	45	47	64	54	71	52	86
Factor for	Cracked	k _{cr,N}	[-]				7.7			
	Uncracked	kucr,N	[-]				11.0			
Concrete cone failure	Edge distance	C cr,N	[mm]				1.5 h _{ef}			
	Spacing	S _{cr,N}	[mm]		-		3 h _{ef}		-	
Splitting failure	Edge distance	C cr,sp	[mm]	1.5 h _{ef}	1.5	i h _{ef}	1.8	h _{ef}	1.8	h _{ef}
Splitting failure	Spacing	Scr,sp	[mm]	3 h _{ef}	3	h _{ef}	3.6	h _{ef}	3.6	h _{ef}
Robustness		γinst	[-]	1,4	1.0	1.2	1.2	1.0	1.	.2
Concrete pry-out fai	lure									
Pry-out factor		k ₈	[mm]	1.5			2	.0		
Concrete edge failu	re									
Effective length of an	chor	l _f = h _{ef}	[mm]	45	47	64	54	71	52	86
Effective diameter of	anchor	d _{nom}	[mm]	6		8	1	0	1	4

 $^{(1)}$ In absence of other national regulations. $^{(2)}$ $N^0_{\text{Rk,c}}$ according to EN 1992-4:2018

ANNEX C6 Performances Essential characteristics for seismic performance category C1 in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C4: Essential characteristics for seismic performance category C1 in concrete for HUS4 carbon steel

Fastener size HUS4				8	3	1	0	1	2	1	4
Туре				H(F), C), C, (F)		н	H(F),	A(F)
				h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
Nominal embedment de	pth	h _{nom}	[mm]	60	70	75	85	80	100	85	115
Steel failure for tensio	n and shear load										
Characteristic resistance	e	N _{Rk,s,C1}	[kN]	36	6.0	55	5.0	79	9.0	10	1.5
Partial factor		γ _{Ms,N} ⁽¹⁾	[-]				1	.5			
Characteristic resistance	e	V _{Rk,s,C1}	[kN]	18	8.8	26	6.7	38	3.9	22.5	34.5
Partial factor		γ _{Ms} , ^{V (1)}	[-]				1.	25		•	•
Reduction factor accord EN 1992-4:2018 Annular gap unfilled	ing to	αgap	[-]				0	.5			
Reduction factor accord EN 1992-4:2018 Annular gap filled	ing to	αgap	[-]				1	.0			
Pull-out failure											
Characteristic resistance concrete	e in cracked	NRk,p,C1	[kN]				≥ N ⁰	Rk,c ⁽³⁾			
Concrete cone failure											
Effective embedment de	epth	hef (2)	[mm]	47.6	56.1	59.5	68.0	62.9	79.9	66.3	91.8
Concrete cone failure	Edge distance	Ccr,N	[mm]				1.5	h _{ef}			
Concrete cone failure	Spacing	Scr,N	[mm]				3	h _{ef}			
Installation factor		γinst	[-]				1	.0			
Concrete pry-out failu	re										
Pry-out factor		k ₈	[-]				2	.0			
Concrete edge failure											
Effective length of faste	ner	lf	[mm]	60	70	75	85	80	100	85	115
Outside diameter of fast	ener	d _{nom}	[mm]	8	3	1	0	1	2	1	4
			_	1				1			

⁽¹⁾ In absence of other national regulations.

⁽²⁾ In case $h_{nom} > h_{nom2}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to " $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t)$ ⁽³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

ANNEX C7 Performances Essential characteristics for seismic performance category C1 in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C4 continued					
Fastener size HUS4				10	3
Туре				H(I	F)
				h _{nom1}	h _{nom2}
Nominal embedment de	epth	\mathbf{h}_{nom}	[mm]	85	130
Steel failure for tensio	on and shear load				
Characteristic resistanc	e	N _{Rk,s,C1}	[kN]	107	.7
Partial factor		γ _{Ms} , ^{N (1)}	[-]	1.:	5
Characteristic resistanc	e	V _{Rk,s,C1}	[kN]	42.9	25.3
Partial factor		γ _{Ms,V} ⁽¹⁾	[-]	1.2	25
Partial factor annular ga	ap unfilled	lphagap	[-]	0.	5
Partial factor annular ga	ap filled	lphagap	[-]	1.	0
Pull-out failure					
Characteristic resistanc concrete	e in cracked	NRk,p,C1	[kN]	7.5	19.0
Concrete cone failure					
Effective embedment de	epth	h _{ef} ⁽²⁾	[mm]	66.6	104.9
Concrete cone failure	Edge distance	C _{cr,N}	[mm]	1.5	h _{ef}
	Spacing	Scr,N	[mm]	3 h	lef
Installation factor		γinst	[-]	1.	0
Concrete pry-out failu	re				
Pry-out factor		k ₈	[-]	2.	0
Concrete edge failure					
Effective length of faste	ner	lf	[mm]	85	130
Outside diameter of fas	tener	d _{nom}	[mm]	16	3

⁽¹⁾ In absence of other national regulations.

⁽²⁾ In case $h_{nom} > h_{nom2}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to " $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t)$

ANNEX C8 Performances Essential characteristics for seismic performance category C1 in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C5: Essential characteristics for seismic performance category C1 in concrete for HUS4 stainless steel

Fastener size H	IUS4			8	10	14
Туре				HR, CR	HR, CR	HR
				h _{nom2}	h _{nom2}	h _{nom2}
Nominal embed	ment depth	h _{nom}	[mm]	80	90	110
Steel failure for	r tension and she	ar load	·		·	
Characteristic re	esistance	N _{Rk,s,C1}	[kN]	34.0	52.6	102.2
Partial factor		γ _{Ms,N} ⁽¹⁾	[-]		1.4	
Characteristic re	esistance	V _{Rk,s,C1}	[kN]	11.1	17.9	53.9
Partial factor		γ _{Ms,V} ⁽¹⁾	[-]		1.5	
Pull-out failure			·			
Characteristic re cracked concret		N _{Rk,p,C1}	[kN]	7.7	12.5	17.5
Concrete cone	failure					
Effective embed	lment depth	h _{ef}	[mm]	64	71	86
Concrete cone	Edge distance	Ccr,N	[mm]		1.5 h _{ef}	
failure	Spacing	S _{cr,N}	[mm]		3 h _{ef}	
Robustness		γinst	[-]	1.2	1.0	1.2
Concrete pry-o	ut failure				L	
Pry-out factor		k ₈	[-]		2.0	
Concrete edge	failure					
Effective length	of fastener	I _f = h _{ef}	[mm]	64	71	86
Outside diamete	er of fastener	d _{nom}	[mm]	8	10	14

⁽¹⁾ In absence of other national regulations.

ANNEX C9 Performances Essential characteristics for seismic performance category C2 in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener size HUS4				8	10	12	14
Туре				H(F), C	H(F), C, A(F)	н	H(F), A(F)
				h _{nom3}	h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment dep	oth	h _{nom}	[mm]	70	85	100	115
Adjustment							·
Total maximum thicknes	s of adjustment	t _{adj}	[mm]	10	10	10	10
Maximum number of adj	ustments	n _a	[-]	2	2	2	2
Steel failure for tensior	ı						
Characteristic resistance		N _{Rk,s,C2}	[kN]	36.0	55.0	79.0	101.5
Partial factor		γ _{Ms,N} ⁽¹⁾	[-]		1.	5	
Steel failure for shear l	oad						
Partial factor		γ _{Ms,V} (1)	[-]		1.2	25	
Installation with Hilti filling	g set (HUS4-H ar	nd HUS4-A	۹)				
Characteristic resistance	!	V _{Rk,s,C2}	[kN]	13.9	21.5	27.2	46.5
Partial factor annular gap	o filled	lphagap	[-]		1.	0	·
Partial factor annular gap filled				0.4 13.7			
Characteristic resistance		V _{Rk,s,C2}	[kN]	9.4	13.7	22.5	34.4
Partial factor annular gap	o not filled	αgap	[-]		0.	5	
Pull-out failure							
Characteristic resistance concrete	in cracked	NRk,p,C2	[kN]	2.7	5.4	11.4	17.7
Concrete cone failure							
Effective embedment de	pth	h _{ef}	[mm]	56.1	68.0	79.9	91.8
Concrete cone failure	Edge distance	C _{cr,N}	[mm]		1.5	h _{ef}	
	Spacing	S _{cr,N}	[mm]		3	າ _{ef}	
Installation factor		γinst	[-]		1.	0	
Concrete pry-out failur	6						
Pry-out factor	k ₈	[-]		2.	0		
Concrete edge failure							
Effective length of fasten	er	lf	[mm]	70	85	100	115
Outside diameter of faste	ener	d _{nom}	[mm]	8	10	12	14

⁽¹⁾ In absence of other national regulations.

ANNEX C10 Performances Essential characteristics under fire exposure in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener size HUS4	4-H(F)				8			10	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedmen	t depth	h _{nom}	[mm]	40	60	70	55	75	85
Steel failure for ten	sion and shear	load (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi})	•		•	•	•
	R30	F _{Rk,s,fi}	[kN]		2.6		4.1	4	.2
	R60	F _{Rk,s,fi}	[kN]		1.9		3.1	3	.1
	R90	F _{Rk,s,fi}	[kN]		1.2		2.2	2	.3
Characteristic	R120	F _{Rk,s,fi}	[kN]		0.9		1.5	1	.7
resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]		2.3		4.8	4	.9
	R60	M ⁰ _{Rk,s,fi}	[Nm]		1.7		3.6	3	.7
	R90	M ⁰ Rk,s,fi	[Nm]		1.1		2.6	2	.7
	R120	M ⁰ _{Rk,s,fi}	[Nm]		0.8		1.8	1	.9
Pull-out failure									
Characteristic resistance	R30 R60 R90	N ⁰ Rk,p,fi	[kN]	1.3	2.8	3.6	2.3	3.9	4.7
Tesistance	R120	№ _{Rk,p,fi}	[kN]	1.0	2.2	2.8	1.9	3.1	3.7
Concrete cone failu	ıre				•			•	
Characteristic resistance	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	0.8	2.6	4.0	2.0	4.7	6.5
Tesistanee	R120	N ⁰ Rk,c,fi	[kN]	0.7	2.1	3.2	1.6	3.7	5.2
Edge distance							•		•
R30 to R120		C _{cr,fi}	[mm]			2	h _{ef}		
In case of fire attack	from more than o	one side, the m	ninimum	edge dis	tance mu	st be ≥ 3	00 mm		
Fastener spacing									
R30 to R120		S _{cr,fi}	[mm]			2 0	Cr,fi		
Concrete pry-out fa	ailure								
R30 to R120		k ₈	[-]	1,0	2	,0	1,0	2	,0
The anchorage dept	h must be increa	sed for wet cor	ncrete by	vat least	30 mm co	ompared	to the giv	ven value	

Table C7: Essential characteristics under fire exposure in concrete for HUS4-H carbon steel

ANNEX C11 Performances Essential characteristics under fire exposure in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener size HUS	4-H(F)				12			14		1	6
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedmen	it depth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Steel failure for ter	sion and shear	load (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi})						
	R30	F _{Rk,s,fi}	[kN]	7.5	7.6	7.6	10.3	10.4	10.5	10.6	10.7
	R60	F _{Rk,s,fi}	[kN]	5.5	5.7	5.8	7.7	7.9	8.0	8.1	8.2
	R90	F _{Rk,s,fi}	[kN]	3.7	3.9	4.1	5.2	5.6	5.8	5.7	5.9
Characteristic	R120	F _{Rk,s,fi}	[kN]	2.8	3.0	3.1	3.9	4.2	4.4	4.3	4.5
resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]	11.4	11.6	11.6	18.9	19.2	19.3	23.7	23.9
	R60	M ⁰ Rk,s,fi	[Nm]	8.4	8.8	8.9	14.1	14.6	14.8	18.1	18.3
	R90	M ⁰ Rk,s,fi	[Nm]	5.7	6.0	6.2	9.5	10.2	10.7	12.7	13.2
	R120	M ⁰ _{Rk,s,fi}	[Nm]	4.3	4.6	4.7	7.2	7.7	8.1	9.6	10.0
Pull-out failure											
Characteristic resistance	R30 R60 R90	N ⁰ Rk,p,fi	[kN]	2.6	4.2	6.1	2.9	4.5	7.5	4.6	8.7
resistance	R120	N ⁰ _{Rk,p,fi}	[kN]	2.1	3.4	4.9	2.3	3.6	6.0	3.7	7.0
Concrete cone fail	ure										
Characteristic resistance	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	2.4	5.4	9.8	2.9	6.1	13.9	6.2	19.4
resistance	R120	N ⁰ Rk,c,fi	[kN]	1.9	4.3	7.8	2.3	4.9	11.1	4.9	15.5
Edge distance											
R30 to R120		Ccr,fi	[mm]				2	h _{ef}			
In case of fire attack	from more than o	one side, the n	ninimum	edge	distanc	e must	be ≥ 3	00 mm			
Fastener spacing											
R30 to R120		Scr,fi	[mm]				2 0	Ccr,fi			
Concrete pry-out fa	ailure			1							
R30 to R120		k ₈	[-]				2	.0			
The anchorage dept	th must be increas	sed for wet cor		v at lea	st 30 n	nm com	npared	to the a	aiven v	alue	

ANNEX C12 Performances Essential characteristics under fire exposure in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener size HUS	4-C				8			10	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedmen	t depth	h _{nom}	[mm]	40	60	70	55	75	85
Steel failure for ten	ision and shear	load (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi})					
	R30	F _{Rk,s,fi}	[kN]		0.5			1.0	
	R60	F _{Rk,s,fi}	[kN]		0.4			0.9	
	R90	F _{Rk,s,fi}	[kN]		0.3			0.7	
Characteristic	R120	F _{Rk,s,fi}	[kN]		0.2			0.6	
resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]		0.4			1.2	
	R60	M ⁰ _{Rk,s,fi}	[Nm]		0.3			1.0	
	R90	M ⁰ Rk,s,fi	[Nm]		0.2			0.8	
	R120	M ⁰ _{Rk,s,fi}	[Nm]		0.2			0.6	
Pull-out failure									
Characteristic resistance	R30 R60 R90	N ⁰ Rk,p,fi	[kN]	1.3	2.8	3.6	2.3	3.9	4.7
Tesistance	R120	№ _{Rk,p,fi}	[kN]	1.0	2.2	2.8	1.9	3.1	3.7
Concrete cone fail	ure							•	
Characteristic resistance	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	0.8	2.6	4.0	2.0	4.7	6.5
Tesistance	R120	N ⁰ Rk,c,fi	[kN]	0.7	2.1	3.2	1.6	3.7	5.2
Edge distance									•
R30 to R120		C _{cr,fi}	[mm]			2	h _{ef}		
In case of fire attack	from more than o	one side, the n	ninimum	edge dis	tance mu	st be ≥ 3	00 mm		
Fastener spacing									
R30 to R120		S _{cr,fi}	[mm]			2 0	Ccr,fi		
Concrete pry-out fa	ailure								
R30 to R120		k ₈	[-]	1.0	2	.0	1.0	2	.0
The anchorage dept	h must be increa	sed for wet cor	ncrete by	vat least	30 mm c	ompared	to the giv	ven value	

Table C8: Essential characteristics under fire exposure in concrete for HUS4-C carbon steel

ANNEX C13 Performances Essential characteristics under fire exposure in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C9: Essential characteristics under fire exposure in concrete for HUS4-A carbon steel

Fastener size HUS4	I-A(F)				10			14	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment	depth	h _{nom}	[mm]	55	75	85	65	85	115
Steel failure for ten	sion and shear	load (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi})					
	R30	F _{Rk,s,fi}	[kN]		4.2			8.4	
	R60	F _{Rk,s,fi}	[kN]		3.3			6.8	
	R90	F _{Rk,s,fi}	[kN]		2.5			5.1	
Characteristic	R120	F _{Rk,s,fi}	[kN]		2.1			4.3	
resistance	R30	M ⁰ Rk,s,fi	[Nm]		4.8			15.4	
	R60	M ⁰ Rk,s,fi	[Nm]		3.8			12.4	
	R90	M ⁰ Rk,s,fi	[Nm]		2.9			9.3	
	R120	M ⁰ Rk,s,fi	[Nm]		2.4			7.8	
Pull-out failure									
Characteristic resistance	R30 R60 R90	N ⁰ Rk,p,fi	[kN]	2.3	3.9	4.7	2.9	4.5	7.5
Tesistance	R120	N ⁰ Rk,p,fi	[kN]	1.9	3.1	3.7	2.3	3.6	6.0
Concrete cone failu	ire						1		1
Characteristic resistance	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	2.0	4.7	6.5	2.9	6.1	13.9
Toolotanoo	R120	N ⁰ Rk,c,fi	[kN]	1.6	3.7	5.2	2.3	4.9	11.1
Edge distance									
R30 to R120		Ccr,fi	[mm]			2	h _{ef}		
In case of fire attack	from more than o	one side, the m	ninimum	edge dis	tance mu	ist be ≥ 3	00 mm		
Fastener spacing									
R30 to R120		Scr,fi	[mm]			2 0	Ccr,fi		
Concrete pry-out fa	ilure								
R30 to R120		k ₈	[-]	1,0			2.0		
The anchorage depth	h must be increa	sed for wet cor	ncrete by	/ at least	30 mm c	ompared	to the giv	en value	

ANNEX C14 Performances Essential characteristics under fire exposure in concrete

This annex applies to the product described in the main body of the UK Technical Assessment.

Fastener size I	IUS4			6	6		1	8			1	0		1	4
Туре				HR	CR	н	R	С	R	н	R	С	R	н	R
				hno	om1	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embed depth	ment	h _{nom}	[mm]	5	5	60	80	60	80	70	90	70	90	70	110
Steel failure fo	r tensio	on and sh	near Ioa	d (F _{Rk}	_{,s,fi} = N	R _{k,s,fi} =	V _{Rk,s,f}	ï)							
	R30	F _{Rk,s,fi}	[kN]	4.9	0.2	9	.3	0	.8	18	3.5	1	.4	41	.7
	R60	F _{Rk,s,fi}	[kN]	3.3	0.2	6	.3	0	.6	12	2.0	1	.1	26	6.9
	R90	F _{Rk,s,fi}	[kN]	1.8	0.2	3	.2	0	.5	5	.4	0	.9	12	2.2
Characteristic	R120	$F_{Rk,s,fi}$	[kN]	1.0	0.1	1	.7	0	.4	2	.4	0	.8	5	.4
resistance	R30	M ⁰ Rk,s,fi	[Nm]	4.0	0.2	8	.2	0	.8	19	9.4	1	.5	65	5.6
	R60	M ⁰ Rk,s,fi	[Nm]	2.7	0.2	5	.5	0	.7	12	2.6	1	.2	42	2.4
	R90	M ⁰ _{Rk,s,fi}	[Nm]	1.4	0.1	2	.8	0	.5	5	.7	0	.9	19	9.2
	R120	M ⁰ Rk,s,fi	[Nm]	0.8	0.1	1	.5	0	.4	2	.5	0	.8	8	.5
Concrete pull-	out failu	ire													
Characteristic resistance	R30 R60 R90	N _{Rk,p,fi}	[kN]	1.	.3	1.5	3.0	1.5	3.0	2.3	4.0	2.3	4.0	3.0	6.3
Tesistanee	R120	N Rk,p,fi	[kN]	1.	.0	1.2	2.4	1.2	2.4	1.8	3.2	1.8	3.2	2.4	5.0
Edge distance															
R30 to R120		Ccr,fi	[mm]						2	h _{ef}					
Anchor spacing															
R30 to R120		Scr,fi	[mm]						2 0	Ccr,fi					
Concrete pry-c	out failu	re		-											
R30 to R120		k ₈	[-]	1.	.5					2	.0				

Table C10: Essential characteristics under fire exposure in concrete for HUS4

ANNEX C15 Performances Displacement values in case of static and quasi-static loading

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C11: Displacements under tension loads for HUS4 carbon steel

Fastener size HUS4					8			10	
Туре					H(F), C		н	(F), C, A(F)
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment de	epth	\mathbf{h}_{nom}	[mm]	40	60	70	55	75	85
	Tension Load	Ν	[kN]	2.6	5.4	6.9	3.8	7.5	8.6
Cracked concrete C20/25 to C50/60	Dianlacoment	δ_{N0}	[mm]	0.1	0.3	0.4	0.2	0.4	0.4
	Displacement	δ _{N∞}	[mm]	0.3	0.4	0.4	0.7	0.7	0.9
	Tension Load	Ν	[kN]	3.7	7.1	9.1	5.2	10.5	12.2
Jncracked concrete		δ_{N0}	[mm]	0.1	0.2	0.2	0.1	0.3	0.3
020,20 10 000,00	Displacement	δ _{N∞}	[mm]	0.3	0.4	0.4	0.7	0.7	0.9

Fastener size HUS4					12			14		1	6
Туре					н		н	(F), A(F)	H((F)
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedment d	epth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
	Tension Load	Ν	[kN]	5.1	8.2	11.7	5.7	8.6	14.4	8.7	16.7
Cracked concrete C20/25 to C50/60	Displacement	δ_{N0}	[mm]	0.3	0.4	0.6	0.3	0.4	0.7	0.1	0.4
020/20 10 000/00	Displacement	δ _{N∞}	[mm]	0.9	0.9	1.2	1.3	1.3	1.5	1.3	1.4
	Tension Load	Ν	[kN]	6.8	10.8	15.5	7.5	11.7	19.1	11.5	22.9
Uncracked concrete C20/25 to C50/60	Displacement	δ _{N0}	[mm]	0.2	0.3	0.4	0.2	0.3	0.5	0.4	0.3
	Displacement	δ _{N∞}	[mm]	0.9	0.9	1.2	1.3	1.3	1.5	1.3	1.4

Table C12: Displacements under tension loads for HUS4 stainless steel

Fastener size	HUS			6	1	B		1	0		14	1
Туре				HR, CR	HR,	CR	HR,	CR	I	4	H	R
				h _{nom1}	h _{nom1}	h _{nom2}						
Nominal ancho	rage depth	h _{nom}	[mm]	55	60	80	70	90	70	85	70	110
	Tension load	Ν	[kN]	1.7	2.4	4.8	3.6	6.3	3.0	4.1	4.8	9.9
Cracked concrete		δ _{N0}	[mm]	0.4	0.5	0.7	0.3	0.6	0.2	0.3	0.9	1.4
C20/25 to C50/60	Displacement	δn∞	[mm]	0.5	0.7	1.1	0.6	1.1	0.3	0.7	1.1	1.4
C30/00		$\delta_{N,seis}$	[mm]	(1)	(1)	1.2	(1)	1.2	(1)	1.2	(1)	0.4
Uncracked	Tension load	Ν	[kN]	3.1	4.8	6.3	6.3	9.9	4.8	6.8	7.5	16.0
concrete C20/25 to	Dianlagoment	δηο	[mm]	0.8	0.7	1.6	0.3	1.3	0.2	0.3	0.7	1.0
C50/60	Displacement	δn∞	[mm]	0.8	0.7	1.6	0.3	1.3	0.3	0.7	0.7	1.0

⁽¹⁾ No performance assessed.

ANNEX C16 Performances Displacement values in case of static and quasi-static loading

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C13: Displacements under shear loads for HUS4 carbon steel

Fastener size HUS4					8			10		
Туре					H(F), C		H	(F), C, A(), C, A(F)	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth h _{nom} [mm]			40	60	70	55	75	85		
	Shear Load	V	[kN]	10.7	10.7	12.5	16.5	16.5	18.3	
Concrete C20/25 to C50/60 Displacement $\frac{\delta_{V0}}{\delta_{V0}}$		δ_{V0}	[mm]	1.3	1.1	0.9	1.4	1.3	1.0	
Displacement $\delta_{V^{\infty}}$ [mm]		[mm]	2.0	1.7	1.4	2.1	2.0	1.5		

Fastener size HUS4					12			14		16	
Туре					Н		Н	(F), A(F)	H((F)
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedment depth h _{nom} [mm]			[mm]	60	80	100	65	85	115	85	130
Concrete	Shear Load	V	[kN]	22.2	22.2	25.7	31.4	35.4	35.4	37.2	41.8
C20/25 to δ _{V0}		δ _{V0}	[mm]	1.6	1.6	0.9	5.3	5.3	4.0	2.3	1.8
C50/60 Displacement $\delta_{V^{\infty}}$		[mm]	2.3	2.4	1.4	7.9	7.9	6.0	3.5	2.7	

Table C14: Displacements under shear loads for HUS4 stainless steel

Fastener size HUS	54			6	1	В	1	0	1	4
Туре				HR, CR	HR,	CR	HR,	CR	F	IR
				h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal anchorage	e depth	\mathbf{h}_{nom}	[mm]	55	60	80	70	90	70	110
	Shear load	V	[kN]	7.8	11.0	12.4	13.6	15.7	12.9	27.3
		δνο	[mm]	0.4	2.0	2.3	1.1	1.7	3.5	3.9
C20/25 to C50/60	Displacement	δν∞	[mm]	0.5	2.4	2.9	1.5	2.4	3.9	4.3
		δv,c1	[mm]	(1)	(1)	4.8	(1)	5.3	(1)	7.6

⁽¹⁾ No performance assessed.

ANNEX C17 Performances Displacement values in case of seismic C2 loading

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C15: Displacements under tension and shear loads for seismic category 2 for HUS 4 carbon steel.

Fastener size HUS4			8	10	12	14
Туре			H(F), C	H(F), C, A(F)	н	H(F), A(F)
			h _{nom3}	h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	70	85	100	115
Tension load						
Displacement DLS	$\delta_{\text{N,C2}(\text{DLS})}$	[mm]	0.59	0.80	0.77	1.06
Displacement ULS	$\delta_{N,C2}$ (ULS)	[mm]	1.36	3.66	2.78	3.89
Shear load with Hilti filling set (HUS4-H and HUS4-A)						
Displacement DLS	$\delta_{V,C2\ (DLS)}$	[mm]	1.85	1.72	1.73	2.52
Displacement ULS	$\delta_{V,C2\;(ULS)}$	[mm]	5.44	6.88	5.62	6.79
Shear load without Hilti filling set						
Displacement DLS	$\delta_{V,C2\ (DLS)}$	[mm]	4.64	5.02	4.90	4.93
Displacement ULS	$\delta_{\text{V,C2}(\text{ULS})}$	[mm]	7.96	8.97	7.00	9.14

British Board of Agrément, 1st Floor Building 3, Hatters Lane,

Croxley Park Watford WD18 8YG