

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-23/6697 of 17/05/2023
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Hilti HSL4
Product family to which the construction product belongs:	Torque-controlled expansion anchor, made of galvanized steel, for use in concrete: sizes M8, M10, M12, M16, M20 and M24.
Manufacturer:	Hilti Corporation Feldkircherstrasse 100 FL-9494 Schaan Principality of Liechtenstein
Manufacturing plant(s):	Hilti plants
This UK Technical Assessment contains:	31 pages including 3 Annexes which form an integral part of this assessment.
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601 "Mechanical fasteners for use in concrete"

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The Hilti heavy duty HSL4 anchor is a torque-controlled expansion anchor made of galvanized steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this UK Technical Assessment is based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1. Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance in case of static and quasi-static loading, displacements	See Annexes C1 to C5
Characteristic resistance in case of seismic performance category C1, displacements	See Annexes C6 to C8
Characteristic resistance in case of seismic performance category C2, displacements	See Annexes C9 to C11
Durability	See Annex B1

3.2. Safety in case of fire (BWR 2)

Essential characteristic	Performance						
Reaction to fire	Anchorages satisfy requirements for Class A1						
Resistance to fire	See Annexes C12 to C15						

3.3. Health, hygiene and the environment (BWR 3)

Regarding dangerous substances contained in this UK Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed UK legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4. Safety and accessibility in use (BWR 4)

For Basic Works Requirement 4: Safety and accessibility in use, the same criteria are valid as for Basic Works Requirement 1: Mechanical resistance and stability.

3.5. Protection against noise (BWR 5)

Not relevant.

3.6. Energy economy and heat retention (BWR 6)

Not relevant.

3.7. Sustainable use of natural resources (BWR 7)

No performance assessed.

3.8. General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1. System of assessment and verification of constancy of performance

According to UKAD No. 330232-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1. UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance (where applicable)
- UKTA number.

On behalf of the British Board of Agrément

Λ

Date of Issue: 17 May 2023

Hardy Giesler Chief Executive Officer

British Board of Agrément, 1st Floor Building 3,

st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG

ANNEX A1 Product description Installed condition and product description

This annex applies to the product described in the main body of the UK Technical Assessment.

Installed condition

Product description <u>Figure A1:</u> Hilti torque-controlled expansion anchor HSL4

ANNEX A2 Product description Anchor versions and head configurations

This annex applies to the product described in the main body of the UK Technical Assessment.

Product description

Figure A2:

HSL4...: M8 to M12

HSL4...: M16

HSL4...: M20 to M24

Figure A3:

ANNEX A3 Product description Materials

This annex applies to the product described in the main body of the UK Technical Assessment.

Designation	Material
HSL4, HSL4-G, HSL4-B, HSL	4-SK
Cone	Carbon steel, electroplated zinc coated \geq 5µm
Expansion sleeve	Carbon steel, electroplated zinc coated ≥ 5µm
Collapsible element	Plastic element
Distance sleeve	Carbon steel, electroplated zinc coated ≥ 5µm
HSL4	
Washer	Carbon steel, electroplated zinc coated ≥ 5µm
Hexagonal bolt	Carbon steel, electroplated zinc coated \geq 5µm, rupture elongation \geq 12%
HSL4-G	
Hexagon nut	Carbon steel, electroplated zinc coated ≥ 5µm
Threaded rod	Carbon steel, electroplated zinc coated \geq 5µm, rupture elongation \geq 12%
HSL4-B	
Hexagon bolt with safety cap	Carbon steel, electroplated zinc coated \geq 5µm, rupture elongation \geq 12%
HSL4-SK	
Cup washer	Carbon steel, electroplated zinc coated ≥ 5µm
Countersunk bolt	Carbon steel, electroplated zinc coated \geq 5µm, rupture elongation \geq 12%

Table A1:	Materials	Hilti	heavy	duty	anchor	HSL4

ANNEX B1 Intended use Specifications

This annex applies to the product described in the main body of the UK Technical Assessment.

Specifications of intended use

Anchorages subject to:

Static and quasi-static loading: all sizes. Seismic performance categories C1 and C2: For sizes, see Table B1. Fire exposure: all sizes.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- · Cracked and uncracked concrete.

Use conditions (Environmental conditions):

HSL4, HSL4-G, HSL4-B, HSL4-SK made of galvanized steel: Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports etc.).
- · Anchorages under static or quasi-static loading are designed in accordance with EN 1992-4
- Anchorages under seismic actions (cracked concrete) are designed in accordance with EN 1992-4
- Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings in stand-off installation or with a grout layer under seismic action are not covered in this UK Technical Assessment (UKTA).
- In case of requirements to resistance to fire, local spalling of the concrete cover must be avoided.

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site.
- The anchor may only be set once.
- Drilling technique: see Table B1 and Table **B2**.
- · Cleaning the hole of drilling dust.
- In the case of an aborted hole, drilling of a new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of the aborted hole.

ANNEX B2 Intended use Specifications of intended use

This annex applies to the product described in the main body of the UK Technical Assessment.

Table D1. Specifications of intend	eu use					
Anchorages subject to:	HSL4	HSL4-G	HSL4-B	HSL4-SK		
Static and quasi static loading in cracked and uncracked concrete - Hammer drilling and diamond coring	M8-M24	M8-M24	M12-M24	M8-M12		
Seismic performance category C1 - Hammer drilling and diamond coring	M8-M24	M8-M20	M12-M24	M8-M12		
Seismic performance category C2 - Hammer drilling only	M10-M24	M10-M24	M12-M24	M10-M12		
Fire exposure - Hammer drilling and diamond coring	M8-M24	M8-M24	M12-M24	M8-M12		

Table B1: Specifications of intended use

Table B2: Drilling technique

Anchorages subject to:		HSL4	HSL4-G	HSL4-B	HSL4-SK
Hammer drilling (HD)		M8-M24	M8-M24	M12-M24	M8-M12
Hammer drilling with Hilti hollow drill bit (HDB)		M8 M12-M24	M8 M12-M24	M12-M24	M8 M12
Diamond coring (DD): SPX-T core bits (with the DD- 30 or DD-EC-1 coring tools) or SPX-H, SPX-L or SPX-L Handheld core bits (with the DD-110 TO DD-250 coring tools)	€	M8-M24	M8-M24	M12-M24	M8-M12

Table B3: Methods for application of torque

	HSL4	HSL4-G	HSL4-B	HSL4-SK
Torque wrench	M8-M24	M8-M24	M12-M24	M8-M12
Machine torqueing with Hilti SIW 6AT-A22 impact wrench and SI-AT-A22 ⁽¹⁾ adaptive torque module	M8-M16	M8-M16	1	1

⁽¹⁾ Equivalent combination of Hilti SIW + SI-AT tool, compatible to this anchor type, may be used

ANNEX B3 Intended use Installation parameters

This annex applies to the product described in the main body of the UK Technical Assessment.

Setting positions for HSL4, HSL4-G, HSL4-B

Constant anchor length with various fixture thicknesses t_{fix,i} and corresponding setting position.

ANNEX B4 Intended use Installation parameters HSL4

This annex applies to the product described in the main body of the UK Technical Assessment.

HSL4				M8			M10)		M12			M16			M20			M24	
Nominal diameter of drill bit	d_0	[mm]		12			15			18			24			28			32	
Maximum cutting diameter of drill bit	d _{cut}	[mm]		12.5			15.5		18.5		24.55		28.55		5	32.7		,		
Maximum diameter of clearance hole in the fixture	df	[mm]	14				17			20			26		31			3		
Setting position	i		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Fixture thickness	t _{fix1}	[mm]	5	- 20	0	5	- 20	0	5	- 20	0	10) - 2(00	10) - 20	00	10 - 200		
Effective fixture thickness	t _{fix,i}						t _{fix,1} ⁽¹⁾ - Δi													
Reduction of fixture thickness	Δ_{i}	[mm]	0	20	40	0	20	40	0	25	50	0	25	50	0	30	60	0	30	60
Effective anchorage depth	h _{ef,i}	[mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Minimum depth of drill hole	h _{1,i}	[mm]	80	100	120	90	110	130	105	130	155	125	150	175	155	185	215	180	210	240
Minimum thickness of concrete member	h _{min,i}	[mm]	120	170	190	140	195	215	160	225	250	200	275	300	250	380	410	300	405	435
Width across flats	SW	[mm]		13			17			19		24		30			36			
Installation torque	Tinst	[Nm]		15			25			60			75		145				210	
Uncracked concre	te																			
Minimum spacing	Smin	[mm]		60			70			80			100			125			150	
Minimum spacing	$C \geq$	[mm]		100			100			160			240			300			300	
Minimum edge	Cmin	[mm]		60			70			80			100			150			150	
distance	$\mathbf{S} \geq$	[mm]		100			160			240			240			300			300	
Cracked concrete																				
Minimum spacing	S _{min}	[mm]		50			70			70			80			120		120		
Minimum spacing	$C \geq$	[mm]		80			100		140		180		220		260					
Minimum edge	Cmin	[mm]		60			70			70			100		120		120			
distance	$\mathbf{S} \geq$	[mm]		80			120			160			200			220			280	

Table B4: Installation parameters HSL4

 $^{(1)}$ Predefined fixture thickness t_{fix} according to anchor specification, see Figure A1.

HSL4 Bolt version

ANNEX B5 Intended use Installation parameters HSL4-G

This annex applies to the product described in the main body of the UK Technical Assessment.

	puru													1						
HSL4-G				M 8			M10			M12			M16			M20		M24		
Nominal diameter of drill bit	d_0	[mm]		12			15			18			24			28			32	
Maximum cutting diameter of drill bit	d _{cut}	[mm]		12.5			15.5		18.5		24.55		28.55		5	32.7				
Maximum diameter of clearance hole in the fixture	df	[mm]	14				17			20			26		31					
Setting position	i		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Fixture thickness	t _{fix1}	[mm]	5	- 20	0	5	- 20	0	5	- 20	0	10) - 2(00	10) - 20	00	1() - 2(00
Effective fixture thickness	t _{fix,i}							t _{fix,1} ⁽¹⁾ - Δi												
Reduction of fixture thickness	Δ_{i}	[mm]	0	20	40	0	20	40	0	25	50	0	25	50	0	30	60	0	30	60
Effective anchorage depth	h _{ef,i}	[mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Minimum depth of drill hole	h _{1,i}	[mm]	80	100	120	90	110	130	105	130	155	125	150	175	155	185	215	180	210	240
Minimum thickness of concrete member	h _{min,i}	[mm]	120	170	190	140	195	215	160	225	250	200	275	300	250	380	410	300	405	435
Width across flats	SW	[mm]		13	•		17			19		24		30			36			
Installation torque	Tinst	[Nm]		20			27			60			70			105			180	
Uncracked concre	te																			
Minimum spacing	Smin	[mm]		60			70			80			100			125			150	
Minimum spacing	$c \geq$	[mm]		100			100			160			240			300			300	
Minimum edge	Cmin	[mm]		60			70			80			100			150			150	
distance	$s \geq$	[mm]		100			160			240			240			300			300	
Cracked concrete																				
Minimum spacing	Smin	[mm]		50			70			70			80			120		120		
winning	$\mathbf{C} \geq$	[mm]		80			100			140		180		220		260				
Minimum edge	Cmin	[mm]		60			70			70			100		120		120			
distance	s≥	[mm]		80			120			160			200			220		280		

Table B5: Installation parameters HSL4-G

 $^{(1)}$ Predefined fixture thickness t_{fix} according to anchor specification, see Figure A1.

HSL4-G Threaded rod version

ANNEX B6 Intended use Installation parameters HSL4-SK

This annex applies to the product described in the main body of the UK Technical Assessment.

HSL4-SK		<u>11324-3R</u>	M8	M10	M12
Nominal diameter of drill bit	do	[mm]	12	15	18
Maximum cutting diameter of drill bit	dcut	[mm]	12.5	15.5	18.5
Maximum diameter of clearance hole in the fixture	df	[mm]	14	17	20
Diameter of countersunk hole in the fixture	d _h	[mm]	22.5	25.5	32.9
Height of countersunk head in the fixture	hcs	[mm]	5.8	5.8	8.0
Minimum fixture thickness	t _{fix,min} (1)	[mm]	6	6	8
Effective anchorage depth	h _{ef}	[mm]	60	70	80
Minimum depth of drill hole	h1	[mm]	80	90	105
Min. thickness of concrete member	h _{min}	[mm]	120	140	160
Hexagon socket screw key	SW	[mm]	5	6	8
Installation torque	Tinst	[Nm]	20	32	65
Uncracked concrete					
	Smin	[mm]	60	70	80
Minimum spacing	c≥	[mm]	100	100	160
Median Inc. Patricia	Cmin	[mm]	60	70	80
Minimum edge distance	s≥	[mm]	100	160	240
Cracked concrete					
	Smin	[mm]	50	70	70
winimum spacing	c≥	[mm]	80	100	140
	C _{min}	[mm]	60	70	70
Minimum edge distance	s≥	[mm]	80	120	160

Table B6: Installation parameters HSL4-SK

⁽¹⁾ The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is considered.

HSL4-SK Countersunk version

ANNEX B7 Intended use Installation parameters HSL4-B

This annex applies to the product described in the main body of the UK Technical Assessment.

HSL4-B				M12			M16			M20		M24			
Nominal diameter of drill bit	d_0	[mm]		18			24			28			32		
Maximum cutting diameter of drill bit	d _{cut}	[mm]	18.5			24.55			28.55				32.7		
Maximum diameter of clearance hole in the fixture	d _f	[mm]	20			26			31			35			
Setting position			1	2	3	1	2	3	1	2	3	1	2	3	
Fixture thickness	t _{fix1}	[mm]	5	5 - 20	0	1	0 - 20	0	1	0 - 20	0	1	0 - 20	0	
Effective fixture thickness	t _{fix,i}							t _{fix,1} (¹⁾ - Δi						
Reduction of fixture thickness	Δ_{i}	[mm]	0	25	50	0	25	50	0	30	60	0	30	60	
Effective anchorage depth	h _{ef,i}	[mm]	80	105	130	100	125	150	125	155	185	150	180	210	
Minimum depth of drill hole	h _{1,i}	[mm]	105	130	155	125	150	175	155	185	215	180	210	240	
Minimum thickness of concrete member	h _{min,}	i [mm]	160	225	250	200	275	300	250	380	410	300	405	435	
Width across flats	SW	[mm]		24			30			36		41			
Installation torque	T _{inst}	[Nm]			The	torque	e is co	ontrol	ed by	the s	safety	′ cap.			
Uncracked concrete															
	S min	[mm]		80			100			125			150		
Minimum spacing	$c \geq$	[mm]		160			240			300			300		
Minimum edge	Cmin	[mm]		80			100			150			150		
distance	$\mathbf{s} \geq$	[mm]		240			240			300			300		
Cracked concrete												•			
Minimum encoing	Smin	[mm]		70			80			120			120		
Minimum spacing –		[mm]		140			180		220			260			
Minimum edge	Cmin	[mm]		70			100			120			120		
distance	s ≥	[mm]		160			200			220			280		

Table B7: Installation parameters HSL4-B

HSL4-B Safety cap version

ANNEX B8 Intended use Installation instruction

This annex applies to the product described in the main body of the UK Technical Assessment.

Installation instruction

Hole drilling and cleaning

Anchor setting

Hammer setting, check setting

Anchor torquing

a) Use torque wrench	b) Machine torquing: Only

ANNEX C1 Performances Characteristic resistance under tension load

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C1: Characteristic values of resistance under tension load in case of static and quasistatic loading HSL4, HSL4-G, HSL4-B, HSL4-SK

Size	,			M8	,		M10)		M12	2		M16	;		M20)		M24	Ļ
Setting position			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Steel failure																				
HSL4, HSL4-G,	HSL4-	B, HSL	.4-S	K																
Partial safety factor	γMs,N	[-]										1.5								
HSL4, HSL4-G,	HSL4-	B, HSL	4-SK																	
Characteristic resistance	N _{Rk,s}	[kN]	29.3 46.4 67.4 125.6 196.0 282.4											4						
Pull-out failure																				
Characteristic re	esistanc	e in co	ncre	ete (C20/	25														
HSL4, HSL4-G,	HSL4-I	B, HSL	.4-S	K																
Installation safety factor	γinst	[-]										1.0								
HSL4, HSL4-G,	HSL4-I	B, HSL	.4-S	K																
Non-cracked concrete	N _{Rk,p,u}	ncr [kN]	_ (1)	_ (1)	_ (1)	_ (1)	_ (1)	_ (1)	_ (1)	_ (1)	_ (1)	_ (1)	65	65	_ (1)	95	95	_ (1)	100	100
Cracked concrete	N _{Rk,p,cr}	[kN]	12	12	12	16	16	16	_ (1)	24	24	_ (1)	36	36	_ (1)	50	50	_ (1)	65	65

ANNEX C2 Performances Characteristic resistance under tension load

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C1:	Continı	beu																		
Size				M8			M10)		M12	2		M16	;		M20)		M24	4
Setting position			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Pull-out failure																				
HSL4, HSL4-G,	HSL4-	B, HSL	_4-S	ĸ																
Characteristic re	sistanc	e in co	ncre	ete (C20/	/25														
Increasing	C30/3	7 [-]									1	.22								
factor	C40/5	0 [-]									1	.41								
strength Ψ°	C50/6	0 [-]									1	.55								
Concrete cone	and sp	litting	fail	ure																
HSL4, HSL4-G,	HSL4-	B, HSL	_4-S	ĸ																
Installation safety factor	γinst	[-]									,	1.0								
Easter	k ₁ =k _{uc}	r,N [-]									1	1.0								
	k1=kcr,	,N [-]									7	7.7								
Spacing	Scr,N	[mm]									3	·h _{ef}								
Edge distance	C _{cr,N}	[mm]									1.	5∙h _{ef}	F							
HSL4, HSL4-G,	HSL4-	B, HSL	_4-S	ĸ																
Spacing (splitting)	S cr,sp	[mm]	230	320	400	270	360	550	300	420	520	380	570	680	480	710	850	570	900	1050
Edge distance (splitting)	C _{cr,sp}	[mm]	115	160	200	135	180	275	150	210	260	190	285	340	240	355	425	285	450	525

⁽¹⁾ Pull-out failure is not decisive for design.

ANNEX C3 Performances Characteristic resistance under shear load

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C2: Characteristic values of resistance under shear load in case of static and quasistatic loading HSL4, HSL4-G, HSL4-B, HSL4-SK

otatio iouuing i	<u></u> ,	<u></u> ,			-,	<u> </u>		-												
Size				M 8			M10)		M12	2		M16	;		M20)		M24	ŀ
Setting position			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Steel failure w	ithout le	ever arı	m																	
HSL4, HSL4-G	, HSL4-	B, HSL	4-S	K																
Partial safety factor	γMs,V	[-]									1.	25								
Ductility factor	k 7	[-]									1	.0								
HSL4, HSL4-B																				
Characteristic resistance	$V_{Rk,s}$	[kN]		31.1			60.5	5		89.6	6	1	58.	5	1	186.	0	2	204.	5
HSL4-SK																				
	t_{fix} ⁽¹⁾	[mm]	2	>=1	1	3	>=1	1	:	>=1:	3									
Characteristic	$V_{Rk,s}$	[kN]		31.1			60.5	5		89.6	6									
resistance	$t_{\text{fix}}^{(1)}$	[mm]		<11			<11			<13						-				
	$V_{Rk,s}$	[kN]		14.6	6		23.2	2		33.7	7									
HSL4-G																				
Characteristic resistance	$V_{Rk,s}$	[kN]	N] 26.1 41.8 59.3 120.6 155.3							3	2	204.	5							
Threaded rod only																				
Characteristic resistance	V _{Rk,s}	[kN]		14.6	3		23.2	2		33.7	,		62.8	}		98.0)	1	46.	5

⁽¹⁾ The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is considered.

ANNEX C4 Performances Characteristic resistance under shear load

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C2: Continued Size **M**8 M10 M12 M16 M20 M24 2 2 Setting position 1 2 3 1 2 3 1 2 3 1 23 1 3 1 3 Effective anchorage [mm] 60 80 100 70 90 110 80 105 130 100 125 150 125 155 185 150 180 210 h_{ef} depth Steel failure with lever arm HSL4, HSL4-G, HSL4-B, HSL4-SK Partial safety 1.25 [-] $\gamma_{Ms,V}$ factor 1.0 Ductility factor k_7 [-] Characteristic M⁰_{Rk,s} [Nm] 30 60 105 266 519 898 resistance **Concrete pry-out** failure HSL4, HSL4-G, HSL4-B, HSL4-SK Pry-out factor k₈ [-] 2.4 2.6 2.7 2.8 3.8 3.2 Installation 1.0 [-] γ_{inst} safety factor Concrete edge failure Effective length $l_f = h_{ef} [mm] 60$ 80 100 70 90 110 80 105 130 100 125 150 125 155 185 150 180 210 of anchor Diameter of 12 24 32 dnom [mm] 15 18 28 anchor Installation 1.0 [-] γinst safety factor

ANNEX C5 Performances Displacements

This annex applies to the product described in the main body of the UK Technical Assessment.

Size			M8	M10	M12	M16	M20	M24
HSL4, HSL4-G, HSL4-	B, HSL4-S	К						
Tension load in uncracked concrete	Ν	[kN]	9.3	11.7	14.3	20.0	27.9	36.7
Corresponding	δνο	[mm]	0.1	0.1	0.2	0.3	0.4	0.5
displacement	δ_{N^∞}	[mm]	0.2	0.2	0.2	0.4	0.4	0.6
Tension load in cracked concrete	Ν	[kN]	3.6	6.4	10.2	14.3	20.0	26.2
Corresponding	δνο	[mm]	0.5	0.5	0.6	0.6	0.7	0.8
displacement	δn∞	[mm]	1.1	1.1	1.1	1.1	1.1	1.1

Table C4:	Displacements	under shear load in	case of static	and quasi-static	oading - HSL4,
HSL4-G, HS	SL4-B, HSL4-SK			-	

Size			M8	M10	M12	M16	M20	M24
HSL4, HSL4-B, HSL4-SP	(
Shear load in cracked and uncracked concrete	V	[kN]	17.8	34.6	51.2	90.6	106.3	116.9
Corresponding	δνο	[mm]	3.8	5.2	6.3	8.5	7.3	9.5
displacement	δν∞	[mm]	5.7	7.8	9.4	12.7	11.0	14.3
HSL4-G								
Shear load in cracked and uncracked concrete	V	[kN]	8.6	23.9	33.9	68.9	88.7	116.9
Corresponding	δνο	[mm]	3.7	5.0	6.0	7.9	7.8	9.5
displacement	δν∞	[mm]	5.6	7.4	9.0	11.9	11.8	14.3

ANNEX C6 Performances Characteristic resistance under seismic actions, seismic category C1

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C5: Characteristic values of resistance under tension load in case of seismic category C1 - HSL4, HSL4-G, HSL4-B, HSL4-SK

Size	·			M8			M10)		M12	2		M16	;		M20)		M24	1
Setting position			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Steel failure																				
HSL4, HSL4-G,	HSL4-E	B, HSL	.4-S	κ																
Partial safety factor	γMs,seis (1)	[-]										1.5								
HSL4, HSL4-G,	HSL4-E	3, HSL	.4-S	SK																
Characteristic resistance	N _{Rk,s,se}	is [kN]		29.3 46.4 67.4 125.6 196.0 282.4												4				
Pull-out failure																				
HSL4, HSL4-G,	HSL4-E	B, HSL	.4-S	κ																
Installation safety factor	γinst	[-]										1.0								
HSL4, HSL4-G,	HSL4-E	B, HSL	.4-S	κ																
Characteristic resistance	N _{Rk,p,se}	eis [kN]	12	12	12	16	16	16	_ (2)	24	24	_ (2)	36	36	_ (2)	50	50	_ (2)	65	65
Concrete cone	failure																			
HSL4, HSL4-G,	HSL4-E	B, HSL	4-S	Κ																
Installation safety factor	γinst	[-]										1.0								

⁽¹⁾ In absence of other national regulations
 ⁽²⁾ Pull-out failure is not decisive for design

ANNEX C7 Performances Characteristic resistance under seismic actions, seismic category C1

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C6: Characteristic values of resistance under shear load in case of seismic category C1 – HSL4, HSL4-G, HSL4-B, HSL4-SK

Size	- / -	,		M8			M1()		M12	2		M16	;		M20)		M24	1
Setting position			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Steel failure wit	thout lev	ver arr	n																	
HSL4, HSL4-G,	HSL4-B	, HSL	4-SI	K																
Partial safety factor	γMs,seis (1)	[-]									1	.25								
HSL4, HSL4-B																				
Characteristic resistance	V _{Rk,s,seis}	[kN]		17.7	7		44.2	2		58.2	2	1	14.	1	1	09.	7		163.	6
HSL4-SK																				
Characteristic	t _{fix} ⁽²⁾	[mm]		>=1	1	~	>=1	1		>=1:	3									
resistance	$V_{Rk,s,seis}$	[kN		17.7	7		44.2	2		58.2	2					-				
HSL4-G									-									-		
Characteristic resistance	$V_{Rk,s,seis}$	[kN]		14.9)		30.5	5		38.5	5		86.8	}		91.6	5		-	
Concrete pry-o	ut failure	e																		
Installation safety factor	γinst	[-]										1.0								
Concrete edge	failure																			
Installation safety factor	γinst	[-]										1.0								

⁽¹⁾ In absence of other national regulations

⁽²⁾ The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is considered.

ANNEX C8 Performances Displacements seismic category C1

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C7: Displacements under tension load in case of seismic category C1 - HSL4, HSL4-G, HSL4-B, HSL4-SK

Size			M8	M10	M12	M16	M20	M24
HSL4, HSL4-G, HSL4	-B, HSL4-SK							
Displacement	$\delta_{\text{N,seis}}$	[mm]	2.17	1.93	2.12	1.95	3.80	2.69

Table C8: Displacements under shear load in case of seismic category C1 - HSL4, HSL4-G, HSL4-B, HSL4-SK

<u>- 1314, 1314-0, 13</u>	<u> 14-в, пэг4-э</u>	N						
Size			M8	M10	M12	M16	M20	M24
HSL4, HSL4-B, HSL	.4-SK							
Displacement	δ V,seis	[mm]	4.61	4.47	5.18	5.70	4.23	5.95
HSL4-G								
Displacement	δ V,seis	[mm]	4.61	4.47	5.18	5.70	4.23	-

ANNEX C9 Performances Characteristic resistance under seismic actions, seismic category C2

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C9: Characteristic values of resistance under tension load in case of seismic category C2 - HSL4, HSL4-G, HSL4-B, HSL4-SK

Size				M10			M12			M16	i		M20			M24	Ļ
Setting position			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Steel failure																	
Partial safety factor	γMs,seis ⁽¹⁾	[-]								1.5							
Characteristic resistance	N _{Rk,s,seis}	[kN]		46.4			67.4			125.0	6		196.()		282.4	4
Pull-out failure																	
Installation safety factor	γinst	[-]								1.0							
Characteristic resistance	N Rk,p,seis	[kN]	12.2	12.2	12.2	_ (2)	25.8	25.8	34.2	34.2	34.2	40.1	40.1	40.1	45.9	45.9	45.9
Concrete cone fai	ilure																
Installation safety factor	γinst	[-]								1.0							

⁽¹⁾ In absence of other national regulations
 ⁽²⁾ Pull-out failure is not decisive for design

ANNEX C10 Performances Characteristic resistance under seismic actions, seismic category C2

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C10: Characteristic values of resistance under shear load in case of seismic category C2 - HSL4, HSL4-G, HSL4-B, HSL4-SK

Size		Í	M10		M12			M16		i		M20)		M24		
Setting position			1	2	3	1	1	2	3	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Steel failure with	out lever a	rm															
Partial safety factor	γMs,seis ⁽¹⁾	[-]							1	.25							
HSL4, HSL4-B	I I																
Characteristic resistance	V _{Rk,s,seis} [kN] 25.4 30.5 61.8 78.1											87.9					
HSL4-SK																	
Characteristic	t _{fix} ⁽²⁾	[mm]		>=11	1		>=13	3									
resistance	V _{Rk,s,seis}	[kN]		25.4			30.5						-				
HSL4-G																	
Characteristic resistance	$V_{Rk,s,seis}$	[kN]		22.5			22.5			44.6	i		50.2			77.7	
Concrete pry-out	failure																
Installation safety factor	γinst	[-]								1.0							
Concrete edge fa	ailure																
Installation safety factor	safety _{γinst} [-] 1.0																

⁽¹⁾ In absence of other national regulations

⁽²⁾ The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is considered.

ANNEX C11 Performances Displacements seismic category C2

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C11: Displacements under tension load in case of seismic category C2 - HSL4, HSL4-G, HSL4-B, HSL4-SK

Size		M10	M12	M16	M20	M24
Displacement DLS δ	N,seis(DLS) [mm]	3.63	5.27	5.42	3.95	3.73
Displacement ULS δ	N,seis(ULS) [mm]	13.09	14.68	16.02	12.25	24.26

Table C12: Displacements under shear load in case of seismic category C2 - HSL4, HSL4-B, HSL4-SK

Size		M10	M12	M16	M20	M24
Displacement DLS $\delta_{V,seis(DLS)}$	[mm]	3.17	4.15	4.55	6.29	4.37
Displacement ULS $\delta_{V,seis(ULS)}$	[mm]	7.12	7.31	18.31	14.16	19.51

Table C13: Displacements under shear load in case of seismic category C2 - HSL4-G

Size		M10	M12	M16	M20	M24
Displacement DLS	$\delta_{\text{V,seis(DLS)}}$ [mm]	3.13	5.68	5.58	5.88	4.48
Displacement ULS	$\delta_{\text{V,seis}(\text{ULS})}$ [mm]	7.46	10.17	9.08	9.70	10.81

ANNEX C12 Performances Characteristic resistance of tension load resistance under fire resistance

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C14:	Characteristic ten	sion resis	tance unde	r fire expos	sure for Hilt	ti metal exp	ansion
anchor HSL	.4, HSL4-G, HSL4-	B, HSL4-SI	K in cracke	d and uncr	acked cond	rete	

Size			M8			M10			M12			M16		5	M20			M24		
Setting positio	n		1	2	3	1	2	3	1	2	3	1	\bigcirc	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Steel failure																				
HSL4, HSL4-0	G, HSL	.4-B, HSL	4-S	K		-			-											
	R30	N _{Rk,s,fi} [kN]		2.7			4.2			6.0			11.1			17.4	ļ	:	25.0)
Characteristic	R60	N _{Rk,s,fi} [kN]		2.1			3.5			5.3			9.9			15.4		:	22.2	2
resistance	R90	N _{Rk,s,fi} [kN]		1.5			2.8			4.6			8.6			13.4	ļ		19.3	;
	R120	N _{Rk,s,fi} [kN]		1.2			2.4			4.3			8.0			12.4			17.9)
Pull-out failur	e																			
HSL4, HSL4-0	G, HSL	.4-B, HSL	4-S	κ																
	R30	N _{Rk,p,fi} [kN]																		
Characteristic	R60	N _{Rk,p,fi} [kN]		3.0			4.0		_ (1)	6.	.0	_ (1)	9.	.0	_ (1)	12	2.5	_ (1)	16	3.3
esistance 2C20/25	R90	N _{Rk,p,fi} [kN]																		
	R120	N _{Rk,p,fi} [kN]		2.4			3.2		_ (1)	4	.8	_ (1)	7.	.2	_ (1)	10	0.0	_ (1)	13	3.0

⁽¹⁾ Pull-out failure is not decisive for design. ⁽²⁾ In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1.0 is recommended.

ANNEX C13 Performances Characteristic resistance of tension load resistance under fire resistance

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C14: Continued

Edge distance

		100										
Size				M8				M10			M12	
Setting positio	n			1	2	3	1	2	3	1	2	3
Effective anchorage dep	oth	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130
Concrete con	e fail	lure	and sp	litting f	ailure							
HSL4, HSL4-0	G, HS	SL4-E	B, HSL4	I-SK								
	R30	Nrk	.,c,fi [kN]									
Characteristic	R60	NRk	.,c,fi [kN]									
≥C20/25	R90	NRk	.,c,fi [kN]	5.0	10.3	18.0	7.4	13.8	22.8	10.3	20.3	34.7
	R12	0N _{Rk}	.,c,fi [kN]	4.0	8.2	14.4	5.9	11.1	18.3	8.2	16.3	27.7
Spacing		Scr,	_N [mm]	240	320	400	280	360	440	320	420	520
Edge distance		Ccr,	_N [mm]	120	160	200	140	180	220	160	210	260
Size					M16	-		M20			M24	
Setting positio	n			1	2	3	1	2	3	1	2	3
Effective anchorage dep	oth	h _{ef}	[mm]	100	125	150	125	155	185	150	180	210
Concrete con	e fail	lure	and sp	litting f	ailure							
HSL4, HSL4-0	G, HS	SL4-E	B, HSL4	I-SK								
	R30	NRk	.,c,fi [kN]									
Characteristic	R60	N _{Rk}	.,c,fi [kN]									
≥C20/25	R90	NRk	.,c,fi [kN]	18.0	31.4	49.6	31.4	53.8	83.8	49.6	78.2	115.0
	R12	0N _{Rk}	.,c,fi [kN]	14.4	25.2	39.7	25.2	43.1	67.0	39.7	62.6	92.0
Spacing		S _{cr,}	_N [mm]	400	500	600	500	620	740	600	720	840

In absence of other national regulations the partial safety factor for resistance under fire exposure, $\gamma_{M,fi}$ = 1.0 is recommended.

300

250 310

370

300

360

420

250

c_{cr,N} [mm] 200

ANNEX C14 Performances Characteristic resistance of shear load resistance under fire resistance

This annex applies to the product described in the main body of the UK Technical Assessment.

anchor HSL4,	HSL4-G, HSL4-B,	H	5L4	<u>-SK</u>	In	<u>cra</u>	ске	a a	na i	incr	аск	ea c	conc	rete	;				
Size			M	3		M1	0		M12	2		M16	;		M20)		M24	Ļ
Setting positio	n	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Effective anch depth	orage h _{ef} [mm]	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Steel failure v	vithout lever arm																		
HSL4, HSL4-0	G, HSL4-B, HSL4-	SK																	
	R30 V _{Rk,s,fi} [kN]		2.7	7		4.2	2		6.0)		11.1			17.4	ŀ		25.0)
Characteristic	R60 $V_{Rk,s,fi}[kN]$		2.′	1		3.5	5		5.3	i i		9.9			15.4	ŀ		22.2	2
resistance	R90 $V_{Rk,s,fi}[kN]$		1.5	5		2.8	3		4.6			8.6			13.4	ŀ		19.3	3
	R120V _{Rk,s,fi} [kN]		1.2	2		2.4	ł		4.3	i i		8.0			12.4	ŀ		17.9)
Steel failure v	vith lever arm																		
HSL4, HSL4-0	G, HSL4-B, HSL4-	SK																	
	R30 M ⁰ _{Rk,s,fi} [Nm]		2.8	3		5.5	5		9.3			23.6	;		45.9)		79.5	5
Characteristic	R60 M ⁰ _{Rk,s,fi} [Nm]		2.2	2		4.5	5		8.2			20.9)		40.8	3		70.5	5
resistance	R90 M ⁰ _{Rk,s,fi} [Nm]	1.6			3.6	3	7.2		18.2		35.6			61.5		5			
	R120M ⁰ Rk,s,fi [Nm]		1.3	3		3.1			6.7			16.9)		33.0)		57.0)

Table C15: Characteristic shear resistance under fire exposure for Hilti metal expansion anchor HSL4, HSL4-G, HSL4-B, HSL4-SK in cracked and uncracked concrete

In absence of other national regulations the partial safety factor for resistance under fire exposure, $\gamma_{M,fi}$ = 1.0 is recommended.

ANNEX C15 Performances Characteristic resistance of shear load resistance under fire resistance

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C15: Continued

Size					M8			M10			M12	
Setting positio	n			1	2	3	1	2	3	1	2	3
Effective anchorage de	pth	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130
Concrete pry-	-out	failu	re									
Pry-out factor		k ₈	[-]		2.4			2.6			2.7	
HSL4, HSL4-0	G, HS	SL4-E	B, HSL4	-SK								
	R30) V _{Rk}	,cp,fi [kN]									
Characteristic	R60) V _{Rk}	,cp,fi [kN]	12.0	24.7	43.2	19.2	36.0	59.4	27.8	54.9	93.6
≥C20/25	R90) V _{Rk}	, _{cp,fi} [kN]									
	R12	20V _{Rk}	,cp,fi [kN]	9.6	19.8	34.6	15.3	28.8	47.5	22.3	43.9	74.9

Size					M16			M20			M24			
Setting positio	n			1	2	3	1	2	3	1	2	3		
Effective anch depth	orage	h _{ef} [I	mm]	100	125	150	125	155	185	150	180	210		
Concrete pry-	-out fa	ilure												
Pry-out factor		k ₈	[-]		2.8			3.8			3.2			
HSL4, HSL4-0	G, HSL	_4-B, H	ISL4	-SK										
	R30	V _{Rk,cp,fi}	[kN]											
Characteristic	R60	V _{Rk,cp,fi}	[kN]	50.4	88.0	138.9	119.5	204.6	318.4	158.7	250.4	368.1		
≥C20/25	R90	V _{Rk,cp,fi}	[kN]											
	R120	V _{Rk,cp,fi}	[kN]	40.3	70.4	111.1	95.6	163.7	254.7	7 127.0 200.3 29				
Concrete edg														

The initial value $V_{Rk,c,fi}^{0}$ of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by:

 $V^{0}_{Rk,c,fi} = 0.25 \text{ x } V^{0}_{Rk,c} (\leq R90) \qquad V^{0}_{Rk,c,fi} = 0.20 \text{ x } V^{0}_{Rk,c} (R120)$

with $V_{Rk,c,fi}$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1.0 is recommended.

British Board of Agrément, 1st Floor Building 3,

Hatters Lane, Croxley Park Watford WD18 8YG