

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6573 of 14/04/2023
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Injection System Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R
Product family to which the construction product belongs:	Fixings
Manufacturer:	Hilti Corporation Feldkircherstrasse 100, 9494 Schaan Liechtenstein
Manufacturing plant(s):	Hilti Plants
This UK Technical Assessment contains:	21 pages including 3 Annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330499-01-0601 Bonded fasteners for use in concrete

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R is a bonded expansion fastener consisting of a foil pack with injection mortar Hilti HIT-HY 200-R V3 and an anchor rod (including nut and washer) according to Annex A2. The anchor rod is placed into a drill hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the base material (concrete). The product description is given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1. Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi- static loading)	See Annex C1, B2 – B3
Characteristic resistance to shear load (static and quasi- static loading)	See Annex C2
Displacements under short-term and long-term loading	See Annex C3
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C4 – C6

3.2. Safety in case of fire (BWR 2)

Not relevant.

3.3. Health, hygiene and the environment (BWR 3)

Essential characteristic		Performance
Content, emission and/or release	of dangerous substances	No performance assessed

3.4. Safety and accessibility in use (BWR 4)

Not relevant.

3.5. Protection against noise (BWR 5)

Not relevant.

3.6. Energy economy and heat retention (BWR 6)

Not relevant.

3.7. Sustainable use of natural resources (BWR 7)

No performance assessed.

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1. System of assessment and verification of constancy of performance

According to UKAD No. 330499-01-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1. UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance (where applicable)
- UKTA number.

On behalf of the British Board of Agrément

Q.l

Date of Issue: 14 April 2023 Hardy Giesler

Chief Executive Officer

British Board of Agrément,

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG

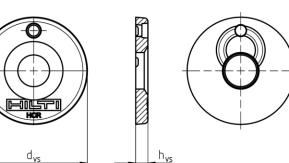
Installed condition Figure A1: HIT-Z, HIT-Z-F, HIT-Z-R Through-setting: Pre-setting: Install fastener before positioning fixture Install fastener through positioned fixture $h_0 > h_{ef}$ h_{ef} **Drill hole** condition (1)**Drill hole** condition $h_0 = h_{ef}$ 2 Annular gap h filled with Hilti HIT-HY 200-R V3 Drill hole condition \bigcirc \rightarrow non-cleaned drill hole Drill hole condition $@ \rightarrow$ drilling dust is removed

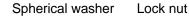
Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Product description Installed condition	Annex A1

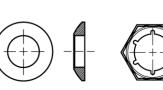
Product description: Injection mortar and steel elements Injection mortar Hilti HIT-HY 200-R V3: Hybrid system with aggregate 330 ml and 500 ml

Product name: "Hilti HIT-HY 200-R V3"

Static mixer Hilti HIT-RE-M


Steel elements




Hilti fastener: HIT-Z and HIT-Z-R: M8 to M20 Hilti fastener: HIT-Z-F: M16 and M20

Hilti Filling Set to fill the annular gap between fastener and fixture

Filling washer

Hilti Filling Set			M16	M20	
Diameter of filling washer	dvs	[mm]	52	60	
Thickness of filling washer	h_{VS}	[mm]	6		
Thickness of Hilti Filling Set	h_fS	[mm]	11	13	

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Product description Injection mortar / Static mixer / Steel elements / Filling set	Annex A2

	erials
Designation	Material
Metal parts made o	f zinc coated steel
Fastener HIT-Z	For \leq M12: $f_{uk} = 650$ N/mm², $f_{yk} = 520$ N/mm², For M16: $f_{uk} = 610$ N/mm², $f_{yk} = 490$ N/mm², For M20: $f_{uk} = 595$ N/mm², $f_{yk} = 480$ N/mm², Elongation at fracture ($I_0=5d$) > 8% ductile Electroplated zinc coated \geq 5 μ m
Washer	Electroplated zinc coated $\geq 5 \mu m$
Nut	Strength class of nut adapted to strength class of fastener Electroplated zinc coated $\geq 5~\mu\text{m}$
Hilti Filling Set	Filling washer: Electroplated zinc coated $\geq 5~\mu m$ Spherical washer: Electroplated zinc coated $\geq 5~\mu m$ Lock nut: Electroplated zinc coated $\geq 5~\mu m$
Metal parts made o	f multilayer coated steel
Fastener HIT-Z-F	For M16: $f_{uk} = 610 \text{ N/mm}^2$, $f_{yk} = 490 \text{ N/mm}^2$, For M20: $f_{uk} = 595 \text{ N/mm}^2$, $f_{yk} = 480 \text{ N/mm}^2$, Elongation at fracture (I_0 =5d) > 8% ductile; Multilayer coating, ZnNi-galvanized according to DIN 50979:2008-07
Washer	Multilayer coating, ZnNi-galvanized according to DIN 50979:2008-07
Nut	Multilayer coating, ZnNi-galvanized according to DIN 50979:2008-07
Hilti Filling Set	Filling washer: hot dip galvanized \geq 45 μ m Spherical washer: hot dip galvanized \geq 45 μ m Lock nut: hot dip galvanized \geq 45 μ m
Metal parts made o Corrosion resistant	f stainless steel ce Class III according to EN 1993-1-4:2006+A2:2020
Fastener HIT-Z-R	For \leq M12: $f_{uk} = 650$ N/mm², $f_{yk} = 520$ N/mm², For M16: $f_{uk} = 610$ N/mm², $f_{yk} = 490$ N/mm², For M20: $f_{uk} = 595$ N/mm², $f_{yk} = 480$ N/mm², Elongation at fracture ($I_0=5d$) > 8% ductile Stainless steel 1.4401, 1.4404 EN 10088-1:2014
Washer	Stainless steel A4 according to EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of fastener Stainless steel 1.4401, 1.4404 EN 10088-1:2014
Hilti Filling Set	Filling washer: stainless steel A4 according to EN 10088-1:2014 Spherical washer: stainless steel A4 according to EN 10088-1:2014 Lock nut: stainless steel A4 according to EN 10088-1:2014

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Product description Materials	Annex A3

Specifications of intended use

Fastenings subject to:

- · Static and quasi static loading
 - HIT-Z and HIT-Z-R size M8 to M20. HIT-Z-F sizes M16 and M20
- · Seismic performance category:
 - Seismic C1: HIT-Z, HIT-Z-R sizes M8 to M20, HIT-Z-F sizes M16 and M20 in hammer drilled holes.
 - Seismic C2: HIT-Z, HIT-Z-R sizes M12 to M20, HIT-Z-F sizes M16 and M20 in hammer drilled holes.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A2:2021.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.
- Cracked and uncracked concrete.

Temperature in the base material:

- At installation
 - +5 °C to +40 °C
- In-service

Temperature range I: -40 °C to +40 °C

(maximum long term temperature +24 °C and maximum short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(maximum long term temperature +50 °C and maximum short term temperature +80 °C)

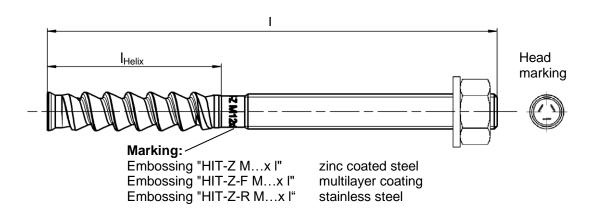
Temperature range III: -40 °C to +120 °C

(maximum long term temperature +72 °C and maximum short term temperature +120 °C)

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A2:2020 and corresponding to corrosion resistance class shown in Table A2 Annex A3 (stainless steels).

Design:


- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be fastened.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- The fastenings are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055.

Installation:

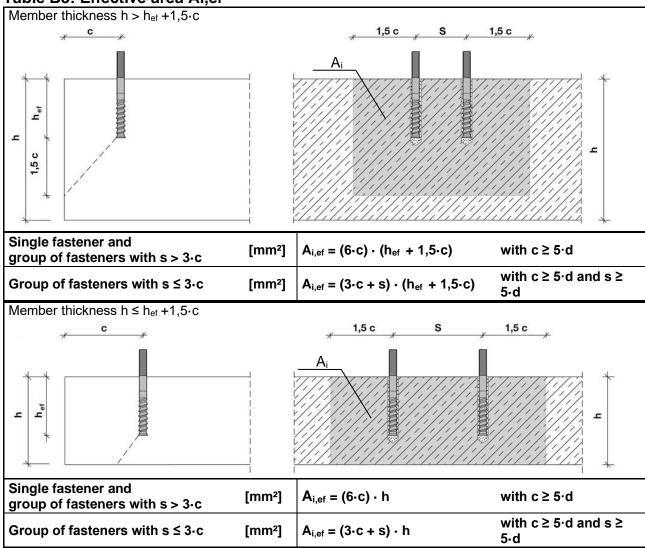
- Concrete condition I1: Installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete
- Installation direction D3: downward and horizontal and upward (e.g. overhead).
- Drilling technique: hammer drilling, diamond coring or hammer drilling with hollow drill bit TE-CD, TE-YD
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Intended Use Specifications	Annex B1

Table B1: Installation parameters HIT-Z, HIT-Z-F and HIT-Z-R								
			M8	M10	M12	M16	M20	
Diameter of embedded part	d	[mm]	8	10	12	16	20	
Nominal drill hole diameter	d ₀	[mm]	10	12	14	18	22	
Length of fastener	min I	[mm]	80	95	105	155	215	
Length of lasteriel	max I	[mm]	120	160	196	420	450	
Length of helix	I _{Helix}	[mm]	35 or 50	50 or 60	60	96	100	
Effective embedment depth	$h_{\text{ef,min}}$	[mm]	60	60	60	96	100	
Enective embedment depth	h _{ef,max}	[mm]	100	120	144	192	220	
Drill hole condition ① Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 60 mm		h _{ef} + 100 mm			
Drill hole condition ② Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 45 mm			
Maximum depth of drill hole	h ₀	[mm]		h – 30 mm		h – 2 d ₀		
Pre-setting: Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	
Through-setting: Maximum diameter of clearance hole in the fixture	d _f	[mm]	11	14	16	20	24	
Maximum fixture thickness	t _{fix}	[mm]	48	87	120	303	326	
Maximum fixture thickness with filling set	t _{fix}	[mm]	41	79	111	292	314	
Installation torque HIT-Z, HIT-Z-F	T _{inst}	[Nm]	10	25	40	80	150	
HIT-Z-R	T_{inst}	[Nm]	30	55	75	155	215	

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Intended Use Installation parameters	Annex B2

Minimum edge distance and spacing


For the calculation of minimum spacing s_{min} and minimum edge distance c_{min} of fasteners in combination with different embedment depth and thickness of concrete member the following equation shall be fulfilled:

 $A_{i,req} < A_{i,ef}$

Table B2: Required area A_{i,req}

HIT-Z, HIT-Z-F, HIT-Z-R			M8	M10	M12	M16	M20
Cracked concrete	$A_{i,req}$	[mm ²]	19200	40800	58800	94700	148000
Non-cracked concrete	A _{i,req}	[mm ²]	22200	57400	80800	128000	198000

Table B3: Effective area Ai,ef

c_{min} and s_{min} in 5 mm steps

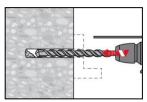
Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Intended Use Installation parameters: member thickness, spacing and edge distances	Annex B3

Table B4: Maximum working time and minimum curing time

Temperature in the base material T 1)		Maximu t _{work}	m working time	Minimum t _{cure}	Minimum curing time t _{cure}		
		5 °C	45	min	4	hours	
6 °C	to	10 °C	30	min	2,5	hours	
11 °C	to	20 °C	15	min	1,5	hours	
21 °C	to	30 °C	9	min	1	hours	
31 °C	to	40 °C	6	min	1	hours	

¹⁾ The minimum foil pack temperature is 0 °C

 Table B5:
 Parameters of drilling and setting tools

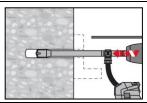

Fastener	Drill			Installation	
	Hammer drilling				
HIT-Z / HIT-Z(-F,-R)	Drill bit	Hollow drill bit TE- CD, TE-YD	Diamond coring	Piston plug	
			€ 🗈 🕽		
Size	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-SZ	
M8	10	-	10	-	
M10	12	12	12	12	
M12	14	14	14	14	
M16	18	18	18	18	
M20	22	22	22	22	

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Intended Use Maximum working time and minimum curing time Cleaning and setting tools	Annex B4

Installation instruction

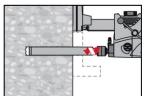
Hole drilling

a) Hammer drilling



<u>Through-setting:</u> Drill hole through the clearance hole in the fixture to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

<u>Pre-setting</u>: Drill hole to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

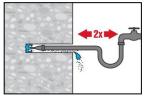

After drilling is complete, proceed to the "injection preparation" step in the installation instruction.

b) Hammer drilling with Hilti hollow drill bit

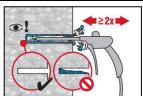
<u>Pre- / Through-setting:</u> Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual (see Annex A1 – Drill hole condition ②). After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

c) Diamond coring

Diamond coring is permissible when suitable diamond core drilling machines and corresponding core bits are used.


<u>Through-setting:</u> Drill hole through the clearance hole in the fixture to the required drilling depth.

Pre-setting: Drill hole to the required embedment depth.

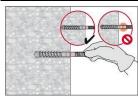

Drill hole cleaning

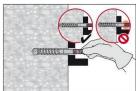
a) No cleaning required for hammer drilled holes.

b) Hole flushing and evacuation required for wet-drilled diamond cored holes.

Flush 2 times from the back of the hole over the whole length until water runs clear. Water-line pressure is sufficient.

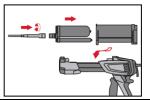
Blow 2 times from the back of the hole (if needed with nozzle extension) with oil-free compressed air (minimum 6 bar at 6 m³/h) to evacuate the water.


Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R


Intended Use

Installation instructions

Annex B5

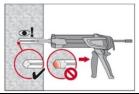

Checking of setting depth

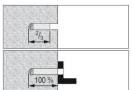
Mark the element and check the setting depth. The element must fit in the hole until the required embedment depth. If it is not possible to insert the element to the required embedment depth, remove the dust in the drill hole or drill deeper.


Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.


Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into the dispenser.


The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive must be discarded. Discarded quantities are:

2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack.

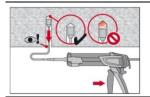
Inject adhesive from the back of the drill hole without forming air voids.

Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

Pre-setting: Fill approximately 2/3 of the drill hole.

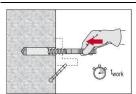
Through-setting: Fill 100% of the drill hole

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

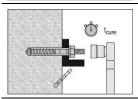

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R

Intended Use

Installation instructions


Annex B6

Overhead installation



For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug Hilti HIT-SZ (see Table B5). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.

Setting the element

Before use, verify that the element is dry and free of oil and other contaminants. Set element to the required embedment depth before working time t_{work} has elapsed. The working time t_{work} is given in Table B4. After setting the element the annular gap between the fastener and the fixture (through-setting) or concrete (pre-setting) must be filled with mortar.

After required curing time t_{cure} (see Table B4) remove excess mortar. The required installation torque T_{inst} is given in Table B1. The fastener can be loaded.

Installation with Hilti filling set

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R

Intended Use Installation instructions **Annex B7**

Table C1: Essential characteristics for HIT-Z (-F, -R), under tension load in case of static and quasi static loading

			M8	M10	M12	M16	M20
Installation factor	γinst	[-]			1,0		
Steel failure		<u> </u>					
HIT-Z, HIT-Z-F	$N_{Rk,s}$	[kN]	24	38	55	96	146
HIT-Z-R	N _{Rk,s}	[kN]	24	38	55	96	146
Pull-out failure							
in uncracked concrete							
Temperature range I: 40 °C / 24 °C	NRk,p,ucr	= ₁₀₀ [kN]	26	44	50	115	150
Temperature range II: 80 °C / 50 °C	N _{Rk,p,ucr}	= ₁₀₀ [kN]	24	40	48	105	135
Temperature range III: 120 °C / 72 °C	N _{Rk,p,ucr}		22	36	44	95	125
in cracked concrete							
Temperature range I: 40 °C / 24 °C	N _{Rk,p,cr} = N _{Rk,p,cr,10}		22	40	48	105	135
Temperature range II: 80 °C / 50 °C	N _{Rk,p,cr} = N _{Rk,p,cr,10}		20	36	44	95	125
Temperature range III: 120 °C / 72 °C	N _{Rk,p,cr} = N _{Rk,p,cr,10}	IKINI	18	32	40	85	110
Concrete cone failure							
Effective embedment depth	h _{ef,min}	[mm]	60	60	60	96	100
Lifective embedinent depth	$h_{\text{ef},\text{max}}$	[mm]	100	120	144	192	220
Factor for uncracked concrete	k _{ucr,N}	[-]			11,0		
Factor for cracked concrete	$k_{\text{cr},N}$	[-]			7,7		
Edge distance	Ccr,N	[mm]			$1,\!5\cdot h_{\text{ef}}$		
Spacing	S _{cr,N}	[mm]			3,0 · h _{ef}		
Splitting failure							
	h / h _{ef} ≥ 2,	35	1,5 · h _{ef}		h/h _{ef} • 2,35		
Edge distance c _{cr,sp} [mm] for 2,38	2,35 > h / h _{ef} > 1,35		6,2 · h _{ef} - 2,0 · h		1,35		
	h / h _{ef} ≤ 1,	35	3,5 · h _{ef}		c _{cr,sp}		
Spacing	Scr,sp	[mm]			2-c _{cr,sp}		

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Performances Essential characteristics under tension load in case of static and quasi static loading	Annex C1

Table C2: Essential characteristics for HIT-Z (-F, -R) under shear load for static and quasi static loading

			M8	M10	M12	M16	M20
Installation factor	γinst	[-]			1,0		
Steel failure without lever arm							
HIT-Z, HIT-Z-F	$V^0_{Rk,s}$	[kN]	12	19	27	48	73
HIT-Z-R	V^0 Rk,s	[kN]	14	23	33	57	88
Ductility factor	k ₇	[-]			1,0		
Steel failure with lever arm							
HIT-Z, HIT-Z-F	M^0 Rk,s	[Nm]	24	49	85	203	386
HIT-Z-R	M^0 Rk,s	[Nm]	24	49	85	203	386
Ductility factor	k ₇	[-]			1,0		
Concrete pry-out failure							
Pry-out factor	k ₈	[-]	2,47	2,47	2,92	2,56	2,56
Concrete edge failure							
Effective length of fastener	l f	[mm]			h _{ef}		
Effective diameter of fastener	d _{nom}	[mm]	8	10	12	16	20

Injed	tion system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R
Perf	ormances

Essential characteristics under shear load in case of static and quasi static loading

Annex C2

Table C3: Displacements under tension load for HIT-Z (-F, -R) for static and quasi static loading (1)

			M8	M10	M12	M16	M20
Uncracked concrete, Te	emperature rang	e I: 40 °C / 24	°C				
Dianlacement	δηο	[mm/kN]	0,03	0,03	0,04	0,05	0,07
Displacement	δn∞	[mm/kN]	0,06	0,08	0,10	0,13	0,17
Uncracked concrete, Te	emperature rang	e II: 80 °C / 50) °C				
Dianlacement	δηο	[mm/kN]	0,03	0,04	0,04	0,06	0,07
Displacement	$\delta_{N^{\infty}}$	[mm/kN]	0,07	0,09	0,11	0,15	0,18
Uncracked concrete, Te	emperature rang	e III: 120 °C /	72 °C				
Displacement	δηο	[mm/kN]	0,03	0,04	0,05	0,06	0,08
Displacement	δn∞	[mm/kN]	0,07	0,10	0,12	0,16	0,20
Cracked concrete, Tem	perature range I:	40 °C / 24 °C	;				
Diantagan	δ_{N0}	[mm/kN]	0,06	0,07	0,08	0,09	0,10
Displacement	δn∞	[mm/kN]	0,21	0,21	0,21	0,21	0,21
Cracked concrete, Tem	perature range II	: 80 °C / 50 °C	C		·		
Dianlacament	δηο	[mm/kN]	0,07	0,08	0,08	0,10	0,11
Displacement	δn∞	[mm/kN]	0,23	0,23	0,23	0,23	0,23
Cracked concrete, Tem	perature range II	I: 120 °C / 72	°C		<u> </u>	<u>.</u>	
Dianlacement	δηο	[mm/kN]	0,07	0,08	0,09	0,11	0,12
Displacement	$\delta_{N^{\infty}}$	[mm/kN]	0,25	0,25	0,25	0,25	0,25

⁽¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_{N\infty} = \delta_{N\infty}$ -factor · N; (N: applied tension load).

Table C4: Displacements under shear load for HIT-Z (-F, -R) for static and quasi static loading (1)

			M8	M10	M12	M16	M20
B	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Displacement	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06

⁽¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V} = \delta_{V} - \text{factor} \cdot \text{V}$; (V: applied shear load)

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Performances Displacements in case of static and quasi-static loading	Annex C3

Table C5: Essential characteristics under tension load for HIT-Z (-F, -R) for seismic performance category C1

seisinic periorinari	oc category	<u> </u>				1	1	
				M8	M10	M12	M16	M20
Installation factor		γinst	[-]			1,0		
Steel failure								
HIT-Z, HIT-Z-F		N _{Rk,s,C1}	[kN]	24	38	55	96	146
HIT-Z-R		N _{Rk,s,C1}	[kN]	24	38	55	96	146
Pull-out failure								
in cracked concrete C2	0/25							
Temperature range I:	40 °C / 24 °C	$N_{Rk,p,C1}$	[kN]	22	38	46	100	130
Temperature range II:	80 °C / 50 °C	N _{Rk,p,C1}	[kN]	20	34	42	90	115
Temperature range III:	120 °C / 72 °C	N _{Rk,p,C1}	[kN]	18	32	38	80	105

Table C6: Essential characteristics under shear load for HIT-Z (-F, -R) for seismic performance category C1

	-		M8	M10	M12	M16	M20
Factor without Hilti filling set	$lpha_{gap}$	[-]			0,5		
Factor with Hilti filling set	$lpha_{\sf gap}$	[-]			1,0		
Steel failure							
HIT-Z, HIT-Z-F	$V_{Rk,s,C1}$	[kN]	8,5	12	16	28	45
HIT-Z-R	V _{Rk,s,C1}	[kN]	9,8	15	22	31	48

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Performances Essential characteristics – seismic performance category C1	Annex C4

Table C7: Essential characteristics for HIT-Z (-F, -R) under tension load for seismic performance category C2

			M12	M16	M20
Installation factor	γinst	[-]		1,0	
Steel failure					
HIT-Z, HIT-Z-F	N _{Rk,s,C2}	[kN]	55	96	146
HIT-Z-R	N _{Rk,s,C2}	[kN]	55	96	146
Pull-out failure					
In cracked concrete C20/25					
Temperature range I: 40 °C / 24 °C	N _{Rk,p,C2}	[kN]	22	70	100
Temperature range II: 80 °C / 50 °C	N _{Rk,p,C2}	[kN]	19	60	80
Temperature range III: 120 °C / 72 °C	N _{Rk,p,C2}	[kN]	16	50	70

Table C8: Essential characteristics under shear load for HIT-Z (-F, -R) for

seismic performance category C2

			M12	M16	M20
Factor without Hilti filling set	$lpha_{\sf gap}$	[-]		0,5	
Factor with Hilti filling set	$lpha_{\sf gap}$	[-]		1,0	
Steel failure					
Installation without Hilti filling set					
Effective embedment depth	h _{ef}	[mm]	< 96	< 125	< 150
HIT-Z, HIT-Z-F	V _{Rk,s,C2}	[kN]	11	17	35
HIT-Z-R	$V_{Rk,s,C2}$	[kN]	16	21	35
Effective embedment depth	h _{ef}	[mm]	≥ 96	≥ 125	≥ 150
HIT-Z ¹⁾ (-F, -R)	$V_{Rk,s,C2}$	[kN]	21	36	55
Installation with Hilti filling set					
Effective embedment depth	h _{ef}	[mm]	< 96	< 125	< 150
HIT-Z ¹⁾ (-F, -R)	V _{Rk,s,C2}	[kN]	20	34	40
Effective embedment depth	h _{ef}	[mm]	≥ 96	≥ 125	≥ 150
HIT-Z ¹⁾ (-F, -R)	$V_{Rk,s,C2}$	[kN]	23	41	61

⁽¹⁾ These values apply only for steel elements shorter than HIT-Z M16x280 and HIT-Z M20x300.

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Performances Essential characteristics and displacements – seismic performance category C2	Annex C5

Table C9: Displacements under tension load for HIT-Z (-F, -R) for seismic performance category C2

		M12	M16	M20
Displacement DLS	$\delta_{N,C2(DLS)}$ [mm]	1,3	1,9	1,2
Displacement ULS	$\delta_{N,C2(ULS)}$ [mm]	3,2	3,6	2,6

Table C10: Displacements under shear load for HIT-Z (-F, -R) for seismic performance category C2

		M12	M16	M20
h _{ef}	[mm]	< 96	< 125	< 150
δv,c2(DLS)	[mm]	2,8	3,1	4,9
δ _{V,C2(ULS)}	[mm]	4,6	6,2	6,8
δ _{V,C2(DLS)}	[mm]	3,0	3,1	4,9
$\delta_{\text{V,C2(ULS)}}$	[mm]	6,2	6,2	6,8
h _{ef}	[mm]	≥ 96	≥ 125	≥ 150
δ _{V,C2(DLS)}	[mm]	3,4	3,6	4,6
δv,c2(ULS)	[mm]	6,0	5,9	5,8
h _{ef}	[mm]	< 96	< 125	< 150
δ _{V,C2(DLS)}	[mm]	1,4	1,7	1,8
δ _{V,C2(ULS)}	[mm]	4,4	5,1	5,6
h _{ef}	[mm]	≥ 96	≥ 125	≥ 150
δv,c2(DLS)	[mm]	1,4	1,7	1,8
δv,c2(ULS)	[mm]	5,2	5,1	7,0
	$\begin{array}{c} \delta_{\text{V,C2(DLS)}} \\ \delta_{\text{V,C2(DLS)}} \\ \delta_{\text{V,C2(DLS)}} \\ \delta_{\text{V,C2(DLS)}} \\ \delta_{\text{V,C2(DLS)}} \\ \delta_{\text{V,C2(DLS)}} \\ \\ \end{array}$	δν,c2(DLS) [mm] δν,c2(DLS) [mm]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Injection system Hilti HIT-HY 200-R V3 with HIT-Z / HIT-Z-F / HIT-Z-R	
Performances Displacements for seismic performance category C2	Annex C6

British Board of Agrément, 1st Floor Building 3,

Ist Floor Building 3 Hatters Lane, Croxley Park Watford WD18 8YG