

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6571 of 14/04/2023				
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément				
Trade name of the construction product:	Injection System Hilti HIT-HY 200-R V3				
Product family to which the construction product belongs:	Fixings				
Manufacturer:	Hilti Corporation Feldkircherstrasse 100, 9494 Schaan Liechtenstein				
Manufacturing plant(s):	Hilti Plants				
This UK Technical Assessment contains:	45 pages including 3 Annexes which form an integral part of this assessment				
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330499-01-0601 Bonded fasteners for use in concrete				

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The injection system Hilti HIT-HY 200-R V3 is a bonded fastener consisting of a foil pack with injection mortar Hilti HIT-HY 200-R V3 and a steel element according to Annex A. The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B. The verifications and assessment methods on which this UK Technical Assessment are based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1. Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1, C2, C4, C5, C7, C8, C10, C11, B3 to B6			
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C3, C6, C9, C12			
Displacements under short-term and long-term loading	See Annex C13 to C16			
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C17 to C21			

3.2. Safety in case of fire (BWR 2)

Not relevant.

3.3. Health, hygiene and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

3.4. Safety and accessibility in use (BWR 4)

Not relevant.

3.5. Protection against noise (BWR 5)

Not relevant.

3.6. Energy economy and heat retention (BWR 6)

Not relevant.

3.7. Sustainable use of natural resources (BWR 7)

No performance assessed.

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1. System of assessment and verification of constancy of performance

According to UKAD No. 330499-01-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1. UKCA marking for the product/ system must contain the following information:

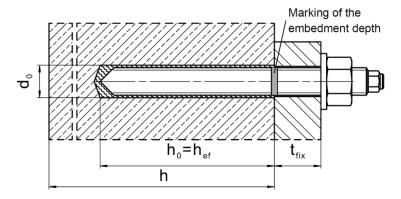
- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance (where applicable)
- UKTA number.

On behalf of the British Board of Agrément

Sont !

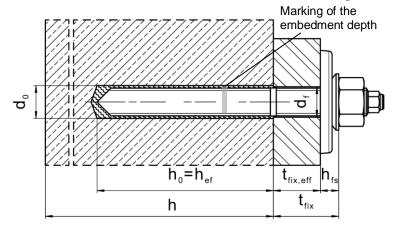
Date of Issue: 14 April 2023 Hardy Giesler

Chief Executive Officer

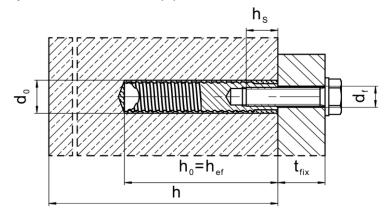

British Board of Agrément, 1st Floor Building 3,

1st Floor Building 3 Hatters Lane, Croxley Park Watford WD18 8YG

Installed condition


Figure A1:

Threaded rod, HAS-U-..., HIT-V-... and AM 8.8


Figure A2:

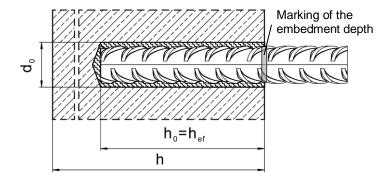
Threaded rod, HAS-U-..., HIT-V-... and AM 8.8 with Hilti Filling Set

Figure A3:

Internally threaded sleeve HIS-(R)N

Injection System Hilti HIT-HY 200-R V3

Product description


Installed condition

Annex A1

Installed condition

Figure A4:

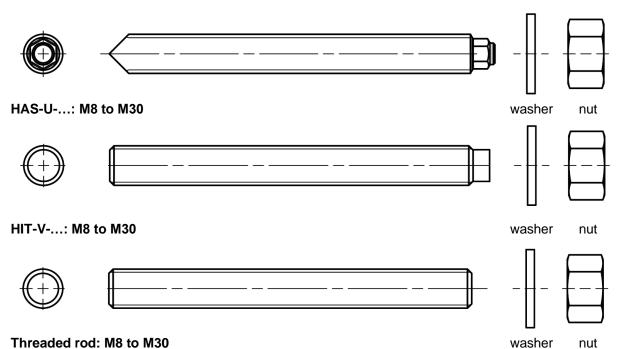
Reinforcing bar

Injection System Hilti HIT-HY 200-R V3

Product description

Installed condition

Annex A2


Product description: Injection mortar and steel elements

Injection mortar Hilti HIT-HY 200-R V3: Hybrid system with aggregate 330 ml and 500 ml

Static mixer Hilti HIT-RE-M

Steel elements

Threaded rod: M8 to M30

Hilti AM 8.8 meter rod electroplated zinc coated: M8 to M30, 1m to 3m Hilti AM HDG 8.8 meter rod hot dip galvanized: M8 to M30, 1m to 3m

Commercial standard threaded rod:

- Materials and mechanical properties according to Table A1.
- Inspection certificate 3.1 according to EN 10204. The document shall be stored.
- Marking of embedment depth.

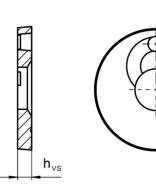
Injection System Hilti HIT-HY 200-R V3 Annex A3 **Product description** Injection mortar / Static mixer / Steel elements


Steel elements

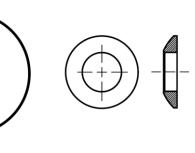
Internally threaded sleeve: HIS-(R)N M8 to M20

Hilti Tension Anchor: HZA M12 to M27 and HZA-R M12 to M24

Reinforcing bar (rebar): ϕ 8 to ϕ 32


- · Materials and mechanical properties according to Table A1
- · Dimensions according to Annex B6

Hilti Filling Set to fill the annular gap between steel element and fixture


Sealing washer

كأنك

 d_{vs}

Hilti Filling Set			M16	M20	M24
Diameter of sealing washer	dvs	[mm]	52	60	70
Thickness of sealing washer	hvs	[mm]		6	
Thickness of Hilti Filling Set	h _{fS}	[mm]	11	13	15

Injection System Hilti HIT-HY 200-R V3

Product description

Injection mortar / Static mixer / Steel elements

Annex A4

Table A1: Materials

Designation Material						
Reinforcing bars (reba	ars)					
Rebar EN 1992-1-1, Annex C	Bars and de-coiled rods Class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					
Steel elements made	e of zinc coated steel					
HAS-U 5.8 (HDG), HIT-V 5.8(F), Threaded rod	Strength class 5.8, f_{uk} = 500 N/mm², f_{yk} = 400 N/mm², Elongation at fracture (l_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized \geq 45 μ m					
HAS-U 8.8 (HDG), HIT-V 8.8 (F), Threaded rod	Strength class 8.8, f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Elongation at fracture (I_0 =5d) > 12% ductile Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized \geq 45 μ m					
Hilti Meter rod AM 8.8 (HDG)	Strength class 8.8, f_{uk} = 800 N/mm², f_{yk} = 640 N/mm² Elongation at fracture (I_0 = 5d) > 12% ductile, Electroplated zinc coated \geq 5 μ m, (F) hot dip galvanized \geq 45 μ m					
Hilti tension anchor HZA	Round steel with threaded part: electroplated zinc coated $\geq 5~\mu m$ Rebar: Bars class B according to NDP or NCI of EN 1992-1-1/NA					
Internally threaded sleeve HIS-N	Electroplated zinc coated ≥ 5 μm					
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m					
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated \geq 5 μm , (F) hot dip galvanized \geq 45 μm					
Hilti Filling Set (F)	Filling washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$ Spherical washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$ Lock nut: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$					

Injection System Hilti HIT-HY 200-R V3	
Product description Materials	Annex A5

Table A1: continued

	Steel elements made of stainless steel Corrosion resistance class (CRC) III according to EN 1993-1-4							
HAS-U A4, HIT-V-R	For \leq M24: strength class 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm²; For $>$ M24: strength class 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm²; Elongation at fracture (l_0 =5d) $>$ 12% ductile							
Threaded rod	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$; For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$; Elongation at fracture ($I_0=5d$) $>$ 12% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1							
Hilti tension anchor HZA-R	Round steel with threaded part: Stainless steel 1.4404, 1.4362, 1.4571 EN 10088-1 Rebar: Bars class B according to NDP or NCI of EN 1992-1-1/NA							
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1							
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1							
Nut	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$; For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$; Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1							
	e of high corrosion resistant steel e class (CRC) V according to EN 1993-1-4							
a) HAS-U HCR, HIT-V-HCR	b) For \leq M20: $f_{uk} = 800$ N/mm², $f_{yk} = 640$ N/mm², For $>$ M20: $f_{uk} = 700$ N/mm², $f_{yk} = 400$ N/mm², Elongation at fracture ($l_0=5d$) $>$ 12% ductile							
c) Threaded rod	d) For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, Elongation at fracture ($I_0=5d$) $>$ 12% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1							
e) Washer	f) High corrosion resistant steel 1.4529, 1.4565 EN 10088-1							
g) Nut	h) For \leq M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², For $>$ M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², High corrosion resistant steel 1.4529, 1.4565 EN 10088-1							

Injection System Hilti HIT-HY 200-R V3	
Product description Materials	Annex A6

Specifications of intended use

Anchorages subject to:

- · Static and quasi static loading.
- Seismic performance category C1 and C2 (see Table B1).

Base material:

- · Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206.
- Strength classes C20/25 to C50/60 according to EN 206.
- · Cracked and uncracked concrete.

Temperature in the base material:

- · At installation
 - -10 °C to +40 °C for the standard variation of temperature after installation
- · In-service

Temperature range I: -40 °C to +40 °C

(maximum long term temperature +24 °C and maximum short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(maximum long term temperature +50 °C and maximum short term temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(maximum long term temperature +72 °C and maximum short term temperature +120 °C)

Table B1: Specifications of intended use

	HIT-HY 200-F	R V3 with				
Steel elements	HAS-U, HIT-V, AM 8.8	Rebar	HZA(-R)	HIS-(R)N		
Hammer drilling with hollow drill bit TE-CD or TE-YD	√	√	✓	√		
Hammer drilling COOCO	✓	✓	✓	✓		
Diamond drilling with roughening tool TE-YRT	✓	✓	✓	✓		
Static and quasi static loading in cracked and uncracked concrete	M8 to M30	φ 8 to φ 32	M12 to M27	M8 to M20		
Seismic performance category C1	M10 to M30	φ 10 to φ 32	M12 to M27	-		
Seismic performance category C2	M16 to M24, HAS-U (-8.8, -8.8 HDG, A4, HCR) HIT-V 8.8 (-8.8, -8.8 F, -R, HCR), AM (8.8, 8.8 HDG) Threaded rod (electroplated zinc coated 8.8 and CRC III, V, Table A1)	-	-	-		

Injection System Hilti HIT-HY 200-R V3	
Intended Use Specifications	Annex B1

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4 corresponding to corrosion resistance classes Annex A6 Table A1 (stainless steels).

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be fastened. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- The anchorages are designed in accordance with: EN 1992-4 and EOTA Technical Report TR 055.

Installation:

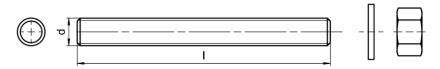
- Use category: dry or wet concrete (not in flooded holes) for all drilling techniques.
- Drilling technique:
 - · Hammer drilling,
 - Hammer drilling with Hilti hollow drill bit TE-CD, TE-YD,
 - Diamond coring with roughening with Hilti roughening tool TE-YRT.
- Installation direction D3: downward, horizontal and upward (e.g. overhead) installation admissible for all elements.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System Hilti HIT-HY 200-R V3	
Intended Use Specifications	Annex B2

Table B2: Installation parameters of threaded rod, HAS-U-..., HIT-V-... and AM 8.8

Threaded rod, HAS-U, H	IIT-V, A	M 8.8	M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	d	[mm]	8	10	12	16	20	24	27	30
Nominal diameter of drill bit	d_0	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth and drill hole depth	$h_{ef} = h_0$	[mm]	60 to 160	60 to 200	70 to 240	80 to 320	90 to 400	96 to 480	108 to 540	120 to 600
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22	26	30	33
Thickness of Hilti Filling Set	h _{fs}	[mm]	-	-	-	11	13	15	-	-
Effective fixture thickness with Hilti Filling Set	$t_{fix,eff}$	[mm]	$[t_{fix,eff} = t_{fix} - h_{fs}]$							
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm h _{ef} + 2·d ₀							
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	Smin	[mm]	40	50	60	75	90	115	120	140
Minimum edge distance	Cmin	[mm]	40	45	45	50	55	60	75	80

Marking:

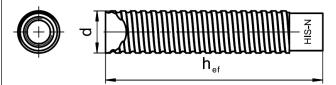

Steel grade number and length identification letter: e.g. 8L

Marking:

5.8 - I = HIT-V-5.8 M...x I 5.8F - I = HIT-V-5.8F M...x I 8.8 - I = HIT-V-8.8 M...x I 8.8F - I = HIT-V-8.8F M...x I R - I = HIT-V-R M...x I HCR - I = HIT-V-HCR M...x I

Hilti meter rod AM (HDG) 8.8

Injection System Hilti HIT-HY 200-R V3


Intended Use

Installation parameters of threaded rod, HAS-U-..., HIT-V-... and AM 8.8

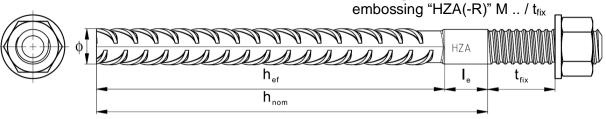
Table B3: Installation parameters of internally threaded sleeve HIS-(R)N

Internally threaded sleeve HIS-(F	M8	M10	M12	M16	M20		
Outer diameter of sleeve	d	[mm]	12,5	16,5	20,5	25,4	27,6
Nominal diameter of drill bit	d_0	[mm]	14	18	22	28	32
Effective embedment depth and drill hole depth	$h_{ef} = h_0$	[mm]	90	110	125	170	205
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230	270
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	150
Thread engagement length minimum-maximum	hs	[mm]	8-20	10-25	12-30	16-40	20-50
Minimum spacing	Smin	[mm]	60	75	90	115	130
Minimum edge distance	C _{min}	[mm]	40	45	55	65	90

Internally threaded sleeve HIS-(R)N...

Marking:
Identifying mark - HILTI and
embossing "HIS-N" (for C-steel)
embossing "HIS-RN" (for stainless steel)

Injection System Hilti HIT-HY 200-R V3	
Intended Use Installation parameters of internally threaded sleeve HIS-(R)N	Annex B4


Table B4: Installation parameters of Hilti tension anchor HZA-R

Hilti tension anchor HZA-R			M12	M16	M20	M24
Rebar diameter	ф	[mm]	12	16	20	25
Nominal embedment depth and drill hole depth	$h_{\text{nom}} = h_0$	[mm]	170 to 240	180 to 320	190 to 400	200 to 500
Effective embedment depth (hef = hnom - le)	h _{ef}	[mm]		h _{nom} -	- 100	
Length of smooth shaft	le	[mm]	100			
Nominal diameter of drill bit	d ₀	[mm]	16	20	25	32
Maximum diameter of clearance hole in the fixture	df	[mm]	14	18	22	26
Maximum installation torque	max T _{inst}	[Nm]	40	80	150	200
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d ₀			
Minimum spacing	S _{min}	[mm]	65	80	100	130
Minimum edge distance	Cmin	[mm]	45	50	55	60

Table B5: Installation parameters of Hilti tension anchor HZA

Hilti tension anchor HZA			M12	M16	M20	M24	M27
Rebar diameter	ф	[mm]	12	16	20	25	28
Nominal embedment depth and drill hole depth	$h_{\text{nom}} = h_0$	[mm]	90 to 240	100 to 320	110 to 400	120 to 500	140 to 560
Effective embedment depth (hef = hnom - le)	h _{ef}	[mm]	h _{nom} – 20				
Length of smooth shaft	l _e	[mm]	20				
Nominal diameter of drill bit	d_0	[mm]	16 20 25 32 35			35	
Maximum diameter of clearance hole in the fixture	df	[mm]	14	18	22	26	30
Maximum installation torque	max T _{inst}	[Nm]	40	80	150	200	270
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2⋅d ₀				
Minimum spacing	Smin	[mm]	65	80	100	130	140
Minimum edge distance	C _{min}	[mm]	45	50	55	60	75

Marking:

Injection System Hilti HIT-HY 200-R V3

Intended Use

Installation parameters of Hilti tension anchor HZA-(R)

Table B6: Installation parameters of reinforcing bar

Reinforcing bar (rebar)			ф8	ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Diameter	ф	[mm]	8	10	1	2	14	16	20	25	26	28	30	32
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	60 to 160	60 to 200	t	0 0 40	75 to 280	80 to 320	90 to 400	100 to 500	104 to 520	112 to 560	120 to 600	128 to 640
Nominal diameter of drill bit	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	32	32	35	37	40
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm			h _{ef} + 2⋅d ₀								
Minimum spacing	Smin	[mm]	40	50	6	0	70	80	100	125	130	140	150	160
Minimum edge distance	Cmin	[mm]	40	45	4	5	50	50	65	70	75	75	80	80

¹⁾ Each of the two given values can be used.

Reinforcing bar

For rebar bolt

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1
- Rib height of the bar h_{rib} shall be in the range 0,05·φ ≤ h_{rib} ≤ 0,07·φ
 (φ: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Injection System Hilti HIT-HY 200-R V3	
Intended Use Installation parameters of reinforcing bar (rebar)	Annex B6

Table B7: Maximum working time and minimum curing time HIT-HY 200-R V3

Temperature in the base material T 1)	Maximum working time t _{work}	Minimum curing time t _{cure}
-10 °C to -5 °C	3 h	20 h
> -5 °C to 0 °C	1,5 h	8 h
> 0 °C to 5 °C	45 min	4 h
> 5 °C to 10 °C	30 min	2,5 h
> 10 °C to 20 °C	15 min	1,5 h
> 20 °C to 30 °C	9 min	1 h
> 30 °C to 40 °C	6 min	1 h

¹⁾ The minimum foil pack temperature is 0 °C.

Injection System Hilti HIT-HY 200-R V3	
Intended Use Maximum working time and minimum curing time	Annex B7

Table B8: Parameters of drilling, cleaning and setting tools

			Installa- tion						
Threaded rod, HAS-U, HIT-V, AM 8.8	HIS-(R)N	Rebar	HZA(-R)	Hamme	r drilling Hollow drill bit ¹⁾	Diamo	ond coring Roughening tool	Brush	Piston plug
	vu)	***********	***********			€ 👂 🗲		*******	
Size	size	size	size	d ₀ [mm]	d ₀ [mm]	d ₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M8	-	φ8	-	10	-	-	-	10	-
M10	-	φ8/ φ10	-	12	12	-	-	12	12
M12	M8	φ10/ φ12	-	14	14	-	-	14	14
-	-	φ12	M12	16	16	-	-	16	16
M16	M10	φ14	-	18	18	18	18	18	18
-	-	φ16	M16	20	20	20	20	20	20
M20	M12	-	-	22	22	22	22	22	22
-	-	φ20	M20	25	25	25	25	25	25
M24	M16	-	-	28	28	28	28	28	28
M27	-	-	-	30	-	30	30	30	30
-	M20	φ25/ φ26	M24	32	32	32	32	32	32
M30	-	φ28	M27	35	35	35	35	35	35
-		φ30	-	37	-	-	-	37	37
-	-	φ32	-	40	-	-	-	40	40

¹⁾ With vacuum cleaner Hilti VC 20/40/60 (automatic filter cleaning activated) or vacuum cleaner with activated automatic filter cleaning as well as volumetric flow rate at turbine \geq 57 l/s, volumetric flow rate at end of hose \geq 106 m³/h and partial vacuum \geq 16 kPa.

Cleaning alternatives

Manual Cleaning (MC): Hilti hand pump for blowing out drill holes with diameters d₀ ≤ 20 mm and drill hole depths h₀ ≤ 10·d. Compressed air cleaning (CAC): Air nozzle with an orifice opening of minimum 3,5 mm in diameter. Automatic Cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

Injection System Hilti HIT-HY 200-R V3

Intended Use

Annex B8

Parameters of drilling, cleaning and setting tools Cleaning alternatives

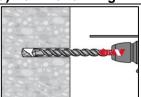
Table B9: Hilti roughening tool TE-YRT – tool parameters

Associated components								
Diamor	nd coring	Roughening tool TE-YRT	Wear gauge RTG					
Q								
d ₀	[mm]	d. [mm]	size					
nominal	measured	d₀ [mm]	SIZE					
18	17,9 to 18,2	18	18					
20	19,9 to 20,2	20	20					
22	21,9 to 22,2	22	22					
25	24,9 to 25,2	25	25					
28	27,9 to 28,2	28	28					
30	29,9 to 30,2	30	30					
32	31,9 to 32,2	32	32					
35	34,9 to 35,2	35	35					

Table B10: Hilti roughening tool TE-YRT – roughening and blowing times

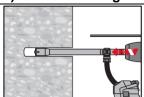
	Roughening time t _{roughen}	Minimum blowing time t _{blowing}
h _{ef} [mm]	troughen [sec] = hef [mm] / 10	tblowing [sec] = troughen [sec] + 20
0 to 100	10	30
101 to 200	20	40
201 to 300	30	50
301 to 400	40	60
401 to 500	50	70
501 to 600	60	80

Hilti roughening tool TE-YRT and wear gauge RTG

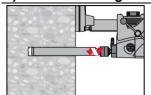


Injection System Hilti HIT-HY 200-R V3	
Intended Use Parameters for use of the Hilti Roughening tool TE-YRT	Annex B9

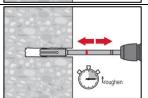
Installation instruction


Hole drilling

a) Hammer drilling


Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

b) Hammer drilling with Hilti hollow drill bit


Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit attached to Hilti vacuum cleaner VC 20/40/60 or with a vacuum cleaner according to Table B8, in each case with automatic cleaning of the filter activated. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

c) Diamond coring with roughening with Hilti roughening tool TE-YRT:

Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

For the use in combination with Hilti roughening tool TE-YRT see parameters in Table B9.

Before roughening, water needs to be removed from the drill hole. Check usability of the roughening tool with the wear gauge RTG.

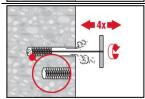
Roughen the drill hole over the whole length to the required $h_{\mbox{\scriptsize ef}}.$

Roughening time troughen see Table B10.

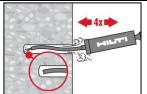
Drill hole cleaning

Just before injection of the mortar, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

Manual Cleaning (MC)


Uncracked concrete only.

For drill hole diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.



The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.

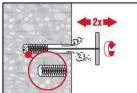
Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.

Brush 4 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill}$ hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

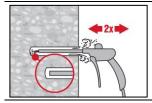
Blow out again with the Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

Injection System Hilti HIT-HY 200-R V3

Intended Use

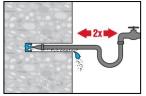

Installation instructions

Compressed air cleaning (CAC) for all drill hole diameters do and all drill hole depths ho

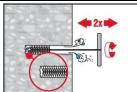


Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (minimum 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

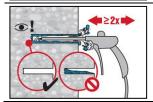
For drill hole diameters \geq 32 mm the compressor must supply a minimum air flow of 140 m³/h.



Brush 2 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.

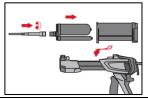


Blow again with compressed air 2 times until return air stream is free of noticeable dust.


Cleaning of diamond cored holes with roughening with Hilti roughening tool TE-YRT.

Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

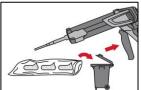
Brush 2 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.



Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (minimum 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water. Remove all water from the drillhole until drillhole is completely dried before mortar injection (t_{blowing} see Table B10). For drill hole diameters ≥ 32 mm the compressor has to supply a minimum air flow of 140 m³/h.

Injection System Hilti HIT-HY 200-R V3

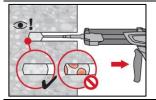
Intended Use Installation instructions


Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.

Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

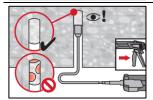


The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack, an initial amount of adhesive must be discarded. Discarded quantities are

2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack, 4 strokes for 500 ml foil pack \leq 5 °C.

The minimum foil pack temperature is 0°C.

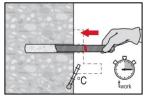
Inject adhesive from the back of the drill hole without forming air voids.



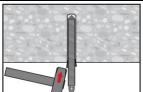
Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill approximately 2/3 of the drill hole to ensure that the annular gap between the steel element and the concrete is completely filled with adhesive along the embedment length.

In water saturated concrete it is required to set the fastener immediately after cleaning the drillhole.

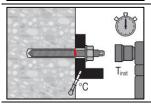
After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.



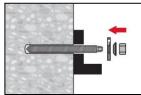
Overhead installation and/or installation with embedment depth $h_{\text{ef}} > 250 \text{mm}$. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s), and appropriately sized piston plug (see Table B8). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.


Injection System Hilti HIT-HY 200-R V3

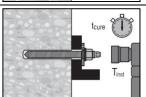
Intended Use Installation instructions


Setting the steel element

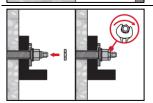
Before use, verify that the element is dry and free of oil and other contaminants. Mark and set steel element to the required embedment depth before working time t_{work} has elapsed. The working time t_{work} is given in Table B7.



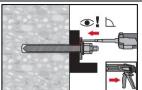
For overhead installation use piston plugs and fix embedded parts with e.g. wedges (Hilti HIT-OHW).



Loading: After required curing time t_{cure} (see Table B7) the fastening can be loaded. The applied installation torque shall not exceed the values max T_{inst} given in Table B2 to Table B5.


Installation of Hilti Filling Set

Use Hilti Filling Set with standard nut. Observe the correct orientation of filling washer and spherical washer.



The applied installation torque shall not exceed the values max T_{inst} given in Table B2 to Table B5.

Optional:

Installation of lock nut. Tighten with a ¼ to ½ turn. (Not for size M24.)

Fill the annular gap between steel element and fixture with 1-3 strokes of a Hilti injection mortar HIT-HY \dots or HIT-RE \dots

Follow the installation instructions supplied with the respective Hilti injection mortar. After required curing time t_{cure} the fastening can be loaded.

Injection System Hilti HIT-HY 200-R V3

Intended Use

Installation instructions

Table C1: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under tension load in concrete

Threaded rod, HAS-U, HIT-V ar	nd AM 8.8	8	M8	M10	M12	M16	M20	M24	M27	M30	
For a working life of 50 and 100 year	s										
Installation factor											
Hammer drilling	γinst	[-]				1	,0				
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	† γinst	[-]	1)				1,0				
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]		1)				1,0			
Steel failure											
Characteristic resistance	$N_{Rk,s}$	[kN]				As	· f _{uk}				
Partial factor grade 5.8	$\gamma_{\text{Ms,N}}^{2)}$	[-]				1	,5				
Partial factor grade 8.8	γMs,N ²⁾	[-]				1	,5				
Partial factor HAS-U A4, HIT-V-R, Threaded rod CRC III (Table A1)	γMs,N ²⁾	[-]	1,87				2,	86			
Partial factor HAS-U HCR, HIT-V-HCR Threaded rod CRC V (Table A1)	' γ _{Ms,N} 2)	[-]			1,5				2,1	2,1	
Concrete cone failure								•			
Factor for uncracked concrete	k _{ucr,N}	[-]				11	,0				
Factor for cracked concrete	k _{cr,N}	[-]				7	,7				
Edge distance	Ccr,N	[mm]				1,5	· h _{ef}				
Spacing	Scr,N	[mm]	3,0 · h _{ef}								
Splitting failure											
_	h / h _{ef}	≥ 2,0		1,0 · h _{ef} 4,6 · h _{ef} - 1,8 · h 2,26 · h _{ef}		h/h _{ef} 2,0			-		
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} > 1,3	4,6 ·								
	h / h _{ef}	≤ 1,3	2			1,0·h _{ef}			2,26·h _{ef}	C _{cr,sp}	
Spacing	Scr,sp	[mm]				2·c	cr,sp				

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under tension load in concrete	Annex C1

No performance assessed.In absence of national regulations.

T - 1 1		^ 4		continued
เวก	Ω	(7	•	CONTINUE
ıab	ı	v.		CONTINUE

Threaded rod, HAS-U, HIT	Г-V ar	nd AM 8.8	3	M8 M10	M12 M16 M20	M24 M27 M30		
Combined pullout and concrete cone failure for a working life of 50 years Characteristic bond resistance in uncracked concrete C20/25								
Temperature range I: 40 °C	/ 24 °C	τ _{Rk,ucr}	[N/mm ²]		18			
Temperature range II: 80 °C	/ 50 °C	$ au_{Rk,ucr}$	[N/mm ²]		15			
Temperature range III: 120 °C		<u> </u>	[N/mm ²]		13			
Characteristic bond resistance	in crack	ed concre	ete C20/25	5				
Temperature range I: 40 °C	/ 24 °C	τ _{Rk,cr}	[N/mm ²]	7,5	8,5	9,0		
Temperature range II: 80 °C	/ 50 °C	τ _{Rk,cr}	[N/mm ²]	6,0	7,0	7,5		
Temperature range III: 120 °C	/ 72 °C	$ au_{Rk,cr}$	[N/mm ²]	5,5	6,0	6,5		
Influence factors ψ on bond	resistan	ice $ au_{Rk}$ in	cracked a	nd uncrack	ed concrete			
Influence of concrete strength	class: τ _ε	$r_k = \tau_{Rk,(C20)}$	0/25) • Ψc					
Temperature range I to III:		Ψc	[-]		$(f_{ck}/20)^{0,1}$			
Influence of sustanined load								
Temperature range I: 40 °C	/ 24 °C	ψ^0 sus	[-]	0,74				
Temperature range II: 80 °C	/ 50 °C	ψ^0 sus	[-]		0,89			
Temperature range III: 120 °C	/ 72 °C	ψ^0 sus	[-]		0,72			
Combined pullout and conc					00 years			
Characteristic bond resistance	in uncra	cked con	crete C20	/25				
		TRk,ucr,100			17			
Temperature range II: 80 °C	/ 50 °C	$\tau_{\text{Rk,ucr,100}}$	[N/mm ²]		14			
Temperature range III: 120 °C			[N/mm ²]	12				
Characteristic bond resistance	in crack	ed concre	ete C20/25	5				
Temperature range I: 40 °C			[N/mm ²]					
Temperature range II: 80 °C	/ 50 °C	TRk,cr,100	[N/mm ²]	5,5 7,0				
Temperature range III: 120 °C	/ 72 °C	TRk,cr,100	[N/mm ²]	5,0 6,0				
Influence factors ψ on bond resistance $\tau_{Rk,100}$ in cracked and uncracked concrete								
Influence of concrete strength class: $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$								
Temperature range I to III:		Ψc	[-]		$(f_{ck}/20)^{0,1}$			

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under tension load in concrete	Annex C2

Table C2: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load in concrete

Threaded rod, HAS-U, HIT-V, A	M 8.8		M8	M10	M12	M16	M20	M24	M27	M30
For a working life of 50 and 100 year										
Steel failure without lever arm										
Characteristic resistance	$V^0_{Rk,s}$	[kN]	$k_6 \cdot A_s \cdot f_{uk}$							
Factor grade 5.8	k 6	[-]				0	,6			
Factor grade 8.8	k 6	[-]				0	,5			
Factor HAS-U A4, HIT-V-R, Threaded rod CRC III (Table A1)	k ₆	[-]				0	,5			
Factor HAS-U HCR, HIT-V-HCR, Threaded rod CRC V (Table A1)	k 6	[-]] 0,5							
Partial factor grade 5.8	$\gamma_{Ms,V}^{1)}$	[-]				1,	25			
Partial factor grade 8.8	γ _{Ms,V} 1)	[-]				1,	25			
Partial factor HAS-U A4, HIT-V-R, Threaded rod CRC III (Table A1)	γ _{Ms,V} 1)	[-]			1,	56			2,	38
Partial factor HAS-U HCR, HIT-V-HCR, Threaded rod CRC V (Table A1)	γMs,v ¹⁾	[-]			1,25				1,75	
Ductility factor	k ₇	[-]				1	,0			
Steel failure with lever arm										
Characteristic resistance	$M^0_{\text{Rk,s}}$	[Nm]				1,2 · V	$V_{el} \cdot f_{uk}$			
Ductility factor	k ₇	[-]	1,0							
Concrete pry-out failure										
Pry-out factor	k ₈	[-]	[-] 2,0							
Concrete edge failure	Concrete edge failure									
Effective length of fastener	l _f	[mm]						min 8 · d _{nor}	(h _{ef} ; _m ; 300)	
Outside diameter of fastener	d_{nom}	[mm]	 							30

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under shear load in concrete	Annex C3

Table C3: Essential characteristics for internally threaded sleeve HIS-(R)N under tension load in concrete

HIS-(R)N			M8	M10	M12	M16	M20
For a working life of 50 years							
Installation factor							
Hammer drilling	γinst	[-]			1,0		
Hammer drilling with Hilti hollow drill bi TE-CD or TE-YD	t γinst	[-]			1,0		
Diamond coring with roughening with Hilti roughening tool TE-YRT	γ̃inst	[-]	1)		1	,0	
Steel failure							
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$N_{Rk,s}$	[kN]	25	46	67	125	116
Partial factor	γMs,N ²⁾	[-]			1,50		
Characteristic resistance HIS-RN with screw or threaded rod grade 70	$N_{Rk,s}$	[kN]	26	41	59	110	166
Partial factor	γMs,N ²⁾	[-]		1	,87		2,4
Concrete cone failure							
Factor for uncracked concrete	$k_{ucr,N}$	[-]			11,0		
Factor for cracked concrete	k _{cr,N}	[-]			7,7		
Edge distance	C _{cr,N}	[mm]			$1,5 \cdot h_{\text{ef}}$		
Spacing	Scr,N	[mm]			$3,0\cdot h_{\text{ef}}$		
Splitting failure							
_	h / h _{ef}	≥ 2,0	1,0	· h _{ef}	1/h _{ef} 1		
Edge distance $c_{cr,sp}$ [mm] for	2,0 > h / h	lef > 1,3	4,6 h _{ef} - 1,8 h		1,3		
	h / h _{ef}	≤ 1,3	2,26	h _{ef}	1	,0·h _{ef} 2	26·h _{ef} c _{cr,sp}
Spacing	Scr,sp	[mm]			2·c _{cr,sp}		

¹⁾ No performance assessed.

²⁾ In absence of national regulations.

Table C3: continued

HIS-(R)N		M8	M10	M12	M16	M20	
Combined pullout and concrete cone fa	ing life c	of 50 years	3				
Effective embedment depth hef	90	110	125	170	205		
Effective fastener diameter d ₁	[mm]	12,5	16,5	20,5	25,4	27,6	
Characteristic bond resistance in uncracke	ed concrete C20/2	25					
Temperature range I: 40 °C / 24 °C τ _{Rk} ,	ucr [N/mm²]			13			
Temperature range II: 80 °C / 50 °C τRk,	ucr [N/mm²]			11			
Temperature range III: 120 °C / 72 °C τRk,	ucr [N/mm²]			9,5			
Characteristic bond resistance in cracked	concrete C20/25	5					
Temperature range I: 40 °C / 24 °C τRk,	cr [N/mm²]			7			
Temperature range II: 80 °C / 50 °C τRk,	cr [N/mm²]			5,5			
Temperature range III: 120 °C / 72 °C τRk,	cr [N/mm²]			5			
Influence factors ψ on bond resistance	τ _{Rk} in cracked a	nd uncra	cked cond	rete			
Influence of concrete strength class: τ_{Rk} =	τ _{Rk,(C20/25)} • ψ _c						
Temperature range I to III : ψ_c [-] $(f_{ck}/20)^{0,1}$							
Influence of sustained load							
Temperature range I: 40 °C / 24 °C ψ ⁰	sus [-]	0,74					
Temperature range II: 80 °C / 50 °C ψ ⁰	sus [-]	0,89					
Temperature range III: 120 °C / 72 °C ψ ⁰	sus [-]						

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under tension load in concrete	Annex C5

Table C4: Essential characteristics for internally threaded sleeve HIS-(R)N under shear load in concrete

HIS-(R)N			М8	M10	M12	M16	M20
For a working life of 50 years							
Steel failure without lever arm							
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$V^0_{Rk,s}$	[kN]	13	23	34	63	58
Partial factor	$\gamma_{Ms,V}^{1)}$	[-]			1,25		
Characteristic resistance HIS-RN with screw or threaded rod grade 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	83
Partial factor	$\gamma_{Ms,V}^{1)}$	[-]		1,	56		2,0
Ductility factor	k ₇	[-]	1,0				
Steel failure with lever arm							
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519
Characteristic resistance HIS-RN with screw or threaded rod grade 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454
Ductility factor	k ₇	[-]			1,0		
Concrete pry-out failure							
Pry-out factor	k ₈	[-]			2,0		
Concrete edge failure							
Effective length of fastener	lf	[mm]	90	110	125	170	205
Outside diameter of fastener	d_{nom}	[mm]	12,5	16,5	20,5	25,4	27,6

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under shear load in concrete	Annex C6

Table C5: Essential characteristics for Hilti tension anchor HZA / HZA-R under tension load in concrete

Hilti tension anchor HZA, HZA	4-R			M12	M16	M20	M24	M27			
For a working life of 50 and 1	00 years										
Installation factor											
Hammer drilling		γinst	[-]			1,0					
Hammer drilling with Hilti hollow TE-CD or TE-YD	v drill bit	γinst	[-]	1,0							
Diamond coring with roughenin roughening tool TE-YRT	g with Hilti	γinst	[-]	1)		1	,0				
Steel failure											
Characteristic resistance HZA		N _{Rk,s}	[kN]	46	86	135	194	253			
Characteristic resistance HZA-F	₹	$N_{Rk,s}$	[kN]	62	111	173	248	1)			
Partial factor		$\gamma_{\text{Ms,N}}^{2)}$	[-]			1,4					
Concrete cone failure											
HZA		h _{ef}	h _{ef} [mm] h _{nom}								
Effective anchorage depth	HZA-R	h _{ef}	[mm]	h _{nom}							
Factor for uncracked concrete		k _{ucr,N}	[-]			11,0					
Factor for cracked concrete		k _{cr,N}	[-]			7,7					
Edge distance		C _{cr,N}	[mm]			$1,5 \cdot h_{\text{ef}}$					
Spacing		Scr,N	[mm]			3,0 · h _{ef}					
Splitting failure relevant for u	ncracked	concret	te								
		h / h _{ef} ≥	2,0	1,0.1	1 ef	1/h _{ef}					
Edge distance c _{cr,sp} [mm] for	2,0) > h / h _e	f > 1,3	4,6·h _{ef} -	1,8·h	1,3					
		h / h _{ef} ≤	1,3	2,26	h _{ef}	1	c,26·h _{ef}				
Spacing	Scr,sp	[mm]	2·C _{cr,sp}								

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under tension load in concrete	Annex C7

No performance assessed.
 In absence of national regulations.

Table C5: continued

Hilti tension anchor HZA, HZA-I	К			M12	M16	M20	M24	M27		
Diameter of rebar		d	[mm]	12	16	20	25	28		
Effective anchorage depth —	IZA	h _{ef}	[mm]			h _{nom} - 20		·		
H	IZA-R	h _{ef}	[mm]			- 100		1)		
Combined pull-out and concret					f 50 year	S				
Characteristic bond resistance in		ed con	1	25						
Temperature range I: 40 °C / 24		τ _{Rk,ucr}				12				
Temperature range II: 80 °C / 50		τRk,ucr				10				
Temperature range III: 120 °C / 72	2°C	τRk,ucr	[N/mm²]			8,5				
Characteristic bond resistance in	cracked	concre	te C20/25							
Temperature range I: 40 °C / 24	4 °C	τRk,cr	[N/mm²]			7				
Temperature range II: 80 °C / 50	0 °C	τRk,cr	[N/mm²]	5,5						
Temperature range III: 120 °C / 72	2°C	$\tau_{\text{Rk,cr}}$	[N/mm²]			5				
Influence factors ψ on bond res	sistance	τ_{Rk} in	cracked a	nd uncrac	ked conc	rete				
Influence of concrete strength class	SS: τ _{Rk} =	τ _{Rk,(C20})/25) · Ψc							
Temperature range I to III :		ψc	[-]			$(f_{ck}/20)^{0,1}$				
Influence of sustained load										
Temperature range I: 40 °C / 24	4 °C	ψ^0 sus	[-]			0,74				
Temperature range II: 80 °C / 50	0 °C	ψ^0 sus	[-]			0,89				
Temperature range III: 120 °C / 72	2°C	$\psi^0{}_{\text{sus}}$	[-]			0,72				
Combined pull-out and concrete	e cone f	ailure	for a wor	king life 1	00 years					
Characteristic bond resistance in	uncracke	ed con	crete C20/	25						
Temperature range I: 40 °C / 24	4 °C	τ _{Rk,ucr}	[N/mm²]			12				
Temperature range II: 80 °C / 50	0 °C	τ _{Rk,ucr}	[N/mm²]			10				
Temperature range III: 120 °C / 72	2°C	τ _{Rk,ucr}	[N/mm²]			8,5				
Characteristic bond resistance in	cracked	concre	te C20/25							
Temperature range I: 40 °C / 24	4 °C	τ _{Rk,cr}	[N/mm²]			7				
Temperature range II: 80 °C / 50	0 °C	τ _{Rk,cr}	[N/mm²]			5,5				
Temperature range III: 120 °C / 72	2 °C	τ _{Rk,cr}	[N/mm²]			5				
Influence factors ψ on bond res	sistance	$ au_{Rk}$ in	cracked a	nd uncrac	ked conc	rete				
Influence of concrete strength class	ss: τ _{Rk} =	τ _{Rk,(C20})/25) · Ψc							
Temperature range I to III :		Ψc	[-]			$(f_{ck}/20)^{0,1}$				
) No performance assessed			I							

No performance assessed

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under tension load in concrete	Annex C8

Table C6: Essential characteristics for Hilti tension anchor HZA, HZA-R under shear load in concrete

Hilti tension anchor HZA, HZA-	Hilti tension anchor HZA, HZA-R					M24	M27				
For a working life of 50 and 100) years										
Steel failure without lever arm											
Characteristic resistance HZA	$V^0_{Rk,s}$	[kN]	23	43	67	97	126				
Characteristic resistance HZA-R	$V^0_{Rk,s}$	[kN]	31	55	86	124	1)				
Partial factor	γMs,V ²⁾	[-]	1,5								
Ductility factor	k ₇	[-]			1,0						
Steel failure with lever arm											
Characteristic resistance HZA	M^0 Rk,s	[Nm]	72	183	357	617	915				
Characteristic resistance HZA-R	M^0 Rk,s	[Nm]	97	234	457	790	1)				
Ductility factor	k ₇	[-]			1,0						
Concrete pry-out failure											
Pry-out factor	k 8	[-]			2,0						
Concrete edge failure											
Effective length of fastener	I _f	[mm]									
Outside diameter of fastener	d _{nom}	[mm]	12	16	20	24	27				

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under shear load in concrete	Annex C9

¹⁾ No performance assessed.
2) In absence of national regulations.

Rebar			ф8	ф 10	φ 12	ф 14	ф 16	ф 20	ф 25	φ:	26	ф 28	ф 30	ф 32
For a working life of 50 and	100 years	;												
Installation factor														
Hammer drilling	γinst	[-]						1,0						
Hammer drilling with Hilti hollo drill bit TE-CD or TE-YD)W γinst	[-]		1,0										
Diamond coring with rougheni with Hilti roughening tool TE-Y		[-]	1,0											
Steel failure														
Characteristic resistance	$N_{Rk,s}$	[kN]					Þ	$\lambda_{s} \cdot f_{uk}$	2)					
Characteristic resistance Rebar B500B according to DIN 488-1	$N_{Rk,s}$	[kN]	28	43	62	85	111	173	270	29	92	339	388	442
Partial factor	γMs,N	³⁾ [-]		ı	ı			1,4		ı				
Concrete cone failure														
Factor for uncracked concrete	k _{ucr,N}	[-]	11,0											
Factor for cracked concrete	k _{cr,N}	[-]	7,7											
Edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}											
Spacing	Scr,N	[mm]					(3,0 · h	ef					
Splitting failure relevant for	uncracke	d concr	ete											
	h / h _{ef} ≥	1,0·h _{ef}												
Edge distance c _{cr,sp} [mm] for	2,0 > h / h	ef > 1,3	4,6	h _{ef} - 1	,8∙h	1,3								
	h / h _{ef} ≤	1,3	2	2,26·h	ef				1,0·h	f :	2,26	c _{cr,sp}		

Spacing

Scr,sp

[mm]

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under tension load in concrete	Annex C10

2 c_{cr,sp}

No performance assessed. f_{uk} according to rebar specification. In absence of national regulations. 2)

Tabl	- 07	7.	continued	
ıanı	e (./	-	CONTINUEC	

Rebar				Ψδ	ሐ 10	ф 12	ሐ 14	ሐ 16	ሐ ኃቦ	ሐ 25	ሐ 26	<u>ተ</u> ኃ፩	ት 3 0	Ψ 3 3
Diameter of rebar		d	[mm]	ψο 8	ψ 10	ψ 12 12	ψ 14 14	ψ 16 16	φ 20 20	ψ 25 25	ψ 26 26	ψ 26 28	ψ 30	ψ 32 32
Combined pull-out an	nd concrete o					<u> </u>	l	<u> </u>		25	20	20	30	32
Characteristic bond res						ine	01 30	year						
Temperature range I:	40°C/24°C			0 02	0120				12					
Temperature range II:									10					
Temperature range III:									8,5					
Characteristic bond res				20/2	25				0,0					
Temperature range I:	40°C/24°C			1)	5					7				
Temperature range II:			[N/mm²]	1)	4					5,5				
Temperature range III:			[N/mm²]	1)	3,5					5				
Influence factors ψ or		cked		ıncra	cked	conc	rete							
Influence of concrete s								-	. 0.0					
Temperature range I to		Ψc	[-]					(f	ck/20)	0,1				
Influence of sustained I		Ψυ						(310 - 0 7					
Temperature range I:		M ₀ ene	[-]						0,74					
Temperature range II:		•	[-]						0,89					
Temperature range III:			[-]						0,72					
<u> </u>				or a working life of 100 years										
Characteristic bond res						,		- ,						
Temperature range I:	40°C/24°C								12					
Temperature range II:									10					
Temperature range III:	120°C/72°C	τ _{Rk,ucr}	[N/mm²]						8,5					
Characteristic bond res	sistance in cra	acked (concrete (220/2	25									
Temperature range I:	40°C/24°C	τ _{Rk,cr}	[N/mm²]	1)	5					7				
Temperature range II:	80°C/50°C	$ au_{Rk,cr}$	[N/mm²]	1)	4					5,5				
Temperature range III:	120°C/72°C	τ _{Rk,cr}	[N/mm²]	1)	3,5					5				
Influence factors ψ or	n bond resist	tance	τ _{Rk} in crac	cked	and เ	ıncra	cked	conc	rete					
Influence of concrete s	trength class:	τ _{Rk} =	TRk,(C20/25)	ψο										
Temperature range I to		ψc	[-]					(f.	ck/20)	0,1				
1) No performance asse		<u> </u>		L										

¹⁾ No performance assessed.

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under tension load in concrete	Annex C11

Table C8: Essential characteristics for rebar under shear load in concrete

Rebar			ф8	ф 10	ф 12	φ 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
For a working life of 50 and 10	0 years												
Steel failure without lever arm													
Characteristic resistance	$V^0_{Rk,s}$	[kN]					0,5	· As ·	fuk ¹⁾				
Characteristic resistance Rebar B500B according to DIN 488-1	V^0 Rk,s	[kN]	14	22	31	42	55	86	135	146	169	194	221
Partial factor	γMs,V ²⁾	[-]		•		•		1,5					
Ductility factor	k ₇	[-]						1,0					
Steel failure with lever arm													
Characteristic resistance	$M^0_{Rk,s}$	[Nm]					1,2	· W _{el} ·	f _{uk} 1)				
Characteristic resistance Rebar B500B according to DIN 488-1	M ⁰ Rk,s	[Nm]	33	65	112	178	265	518	1012	1139	1422	1749	2123
Ductility factor	k ₇	[-]		•		•		1,0					
Concrete pry-out failure													
Pry-out factor	k ₈	[-]						2,0					
Concrete edge failure													
Effective length of fastener	lf	[mm]	min (h _{ef} ; 12 · d _{nom}) min (h _{nom} ; 8 · d _{nom} ; 300							300)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32

¹⁾

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under shear load in concrete	Annex C12

f_{uk} according to rebar specification In absence of national regulations.

Table C9: Displacements under tension load

Threaded rod, H	IAS-U,	HIT-V, AM 8.8	M8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concre	ete temper	ature range I : 40°C / 24°0	C								
Dianlacement	δ_{N0}	$[mm/(N/mm^2)]$	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08	
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16	
Uncracked concre	ete temper	ature range II : 80°C / 50°	С								
Dianlessment	δηο	[mm/(N/mm²)]	0,03	0,04	0,05	0,06	0,08	0,09	0,10	0,12	
Displacement	δn∞	[mm/(N/mm²)]	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16	
Uncracked concrete temperature range III : 120°C / 72°C											
Dianlessment	δηο	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,08	0,10	0,12	0,13	0,16	
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17	
Cracked concrete	temperatu	ire range I : 40°C / 24°C									
Dioplesement	δηο	$[mm/(N/mm^2)]$				0,	07				
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,16								
Cracked concrete	temperatu	re range II : 80°C / 50°C									
Displacement	δηο	$[mm/(N/mm^2)]$				0,	10				
Displacement	$\delta_{N\infty}$	$[mm/(N/mm^2)]$				0,	22				
Cracked concrete	temperatu	ure range III : 120°C / 72°0	2								
Displacement	δ_{N0}	[mm/(N/mm²)]				0,	13				
Displacement	δ_{N^∞}	[mm/(N/mm²)]				0,	29				

Table C10: Displacements under shear load

Threaded rod,	HAS-U,	HIT-V, AM 8.8	M8	M10	M12	M16	M20	M24	M27	M30
Displacement	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Displacement	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Injection System Hilti HIT-HY 200-R V3	3		
Performances Displacements with threaded rod, HAS-II-	UIT \/	and AM 8.8	

Annex C13

Table C11: Displacements under tension load

HIS-(R)N			М8	M10	M12	M16	M20			
Uncracked concret	e tempe	erature range I : 40)°C / 24°C							
Displacement	δ_{N0}	[mm/(N/mm²)]	0,03	0,05	0,06	0,07	0,08			
Displacement	δn∞	[mm/(N/mm²)]	0,06	0,09	0,11	0,13	0,14			
Uncracked concret	e tempe	erature range II : 8	0°C / 50°C							
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11			
Displacement	δn∞	[mm/(N/mm²)]	0,07	0,09	0,11	0,13	0,15			
Uncracked concrete temperature range III : 120°C / 72°C										
Diamlacament	δνο	[mm/(N/mm²)]	0,06	0,08	0,10	0,13	0,14			
Displacement	δn∞	[mm/(N/mm²)]	0,07	0,09	0,11	0,14	0,15			
Cracked concrete	tempera	ture range I : 40°C	C / 24°C							
Diamlacament	δνο	[mm/(N/mm²)]			0,11					
Displacement	δn∞	[mm/(N/mm²)]			0,16					
Cracked concrete	tempera	ture range II : 80°0	C / 50°C							
Diamlacament	δνο	[mm/(N/mm²)]			0,15					
Displacement	δ _{N∞}	[mm/(N/mm²)]			0,22					
Cracked concrete	tempera	ture range III : 120)°C / 72°C							
Diaplacement	δνο	[mm/(N/mm²)]			0,20					
Displacement	δ _{N∞}	[mm/(N/mm²)]			0,29					

Table C12: Displacements under shear load

HIS-(R)N			M8	M10	M12	M16	M20
Displacement	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Displacement	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06

Injection System Hilti HIT-HY 200-R V3	
Performances Displacements with HIS-(R)N	Annex C14

Table C13: Displacements under tension load

Hilti tension anchor HZA, HZ	ZA-R		M12	M16	M20	M24	M27
Uncracked concrete temperatu	re range	I: 40°C / 24°C					
Dioplacement	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,06	0,07	0,08
Displacement	crete temperature range I : 40°C / 24° C / 24° C / $8_{N\odot}$ [mm/(N/m $8_{N\infty}$		0,06	0,08	0,13	0,13	0,15
Uncracked concrete temperatu	re range	II: 80°C / 50°C					
Dioplesement	δ_{N0}	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11
Displacement	δn∞	[mm/(N/mm²)]	0,06	0,09	0,14	0,14	0,15
Uncracked concrete temperatu	re range	III: 120°C / 72°C					
δ_{N0} [mm/(N/mm ²		[mm/(N/mm²)]	0,06	0,08	0,10	0,12	0,14
Displacement	δn∞	[mm/(N/mm²)]	0,07	0,09	0,14	0,14	0,16
Cracked concrete temperature	range I :	40°C / 24°C					
Dioplacement	δνο	[mm/(N/mm²)]			0,11		
Displacement	δn∞	[mm/(N/mm²)]			0,16		
Cracked concrete temperature	range II	: 80°C / 50°C					
Dioplesement	δνο	[mm/(N/mm²)]			0,15		
Displacement	δn∞	[mm/(N/mm²)]			0,22		
Cracked concrete temperature	range III	: 120°C / 72°C					
Displacement	δνο	[mm/(N/mm²)]			0,20		
Uncracked concrete temperature range II : 8 Displacement $\frac{\delta_{N0}}{\delta_{N\infty}}$ [r Uncracked concrete temperature range III : Uncracked concrete temperature range III : Displacement $\frac{\delta_{N0}}{\delta_{N\infty}}$ [r Cracked concrete temperature range I : 40° [r Cracked concrete temperature range I : 40° [r Cracked concrete temperature range II : 80° [r Cracked concrete temperature range II : 80° [r Cracked concrete temperature range III : 80° [r Cracked concrete temperature range III : 80° [r Displacement $\frac{\delta_{N0}}{\delta_{N\infty}}$ [r Cracked concrete temperature range III : 12° [r Displacement $\frac{\delta_{N0}}{\delta_{N0}}$ [r		[mm/(N/mm²)]			0,29		

Table C14: Displacements under shear load

Hilti tension anchor HZA, HZ	ZA-R		M12	M16	M20	M24	M27
Dianlacement	δνο	[mm/kN]	0,05	0,04	0,04	0,03	0,03
Displacement	$\delta_{\text{V}\infty}$	[mm/kN]	0,08	0,06	0,06	0,05	0,05

Injection System Hilti HIT-HY 200-R V3	
Performances Displacements with HZA and HZA-R	Annex C15

Table C15: Displacements under tension load

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32		
Uncracked concrete t	emper	ature range I : 40)°C / 2	4°C											
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,08	0,09	0,09		
Displacement -	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,14	0,15	0,16	0,17		
Uncracked concrete t	emper	ature range II : 8	0°C / 5	50°C											
Diaplacement	δηο	[mm/(N/mm²)]	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,11	0,12	0,12		
Displacement -	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,15	0,16	0,17		
Uncracked concrete t	emper	ature range III : 1	20°C	/ 72°C											
Diaplacement	δηο	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,13	0,14	0,15	0,16		
Displacement -	δ_{N^∞}	[mm/(N/mm²)]	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,15	0,16	0,17	0,18		
Cracked concrete ten	nperatu	ure range I : 40°C	C / 24°(С											
Displacement -	δηο	[mm/(N/mm²)]	0,11												
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,16												
Cracked concrete ten	nperatu	ure range II : 80°0	C / 50°	C											
Displacement	δ_{N0}	[mm/(N/mm²)]						0,15							
Displacement	Displacement $\frac{\delta_{N\infty}}{\delta_{N\infty}} \text{ [mm/(N/mm^2)]}$					0,22									
Cracked concrete ten	nperati	ure range III : 120)°C / 7	2°C											
Diaplacement	δηο	[mm/(N/mm²)]						0,20							
Displacement -	δ _{N∞}	[mm/(N/mm²)]						0,29							

Table C16: Displacements under shear load

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement	δνο	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03
Displacement -	δν∞	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04

Injection System Hilti HIT-HY 200-R V3

Performances

Displacements with rebar

Annex C16

Table C17: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under tension load for seismic performance category C1

					1	1	1	l	
Threaded rod, HAS-U, HIT-V and	M10	M12	M16	M20	M24	M27	M30		
For a working life of 50 and 100 years	3								
Steel failure									
Characteristic resistance	$N_{Rk,s,C1}$	[kN]				$A_s \cdot f_{uk}$			
Combined pullout and concrete cone failure for a working life of 50 years									
Characteristic bond resistance in cracke	d concrete	C20/25							
Temperature range I: 40 °C / 24 °C	τRk,C1	[N/mm ²]	5,2	5,2 7,0					
Temperature range II: 80 °C / 50 °C	τrk,C1	[N/mm ²]	3,9	5,7					
Temperature range III: 120 °C / 72 °C	τ _{Rk,C1}	[N/mm ²]	3,5	3,5 4,8					
Combined pullout and concrete cone	failure for	r a workir	g life o	of 100	years				
Characteristic bond resistance in cracke	d concrete	C20/25							
Temperature range I: 40 °C / 24 °C	τ _{Rk,100,C1}	[N/mm ²]	4,5			6	,3		
Temperature range II: 80 °C / 50 °C	τ _{Rk,100,C1}	[N/mm ²]	3,7			5	,2		
Temperature range III: 120 °C / 72 °C	TRk,100,C1	[N/mm ²]	3,1			4	,4		
Influence factors ψ on bond resistance $\tau_{Rk,C1}$ and $\tau_{Rk,100,C1}$ in cracked concrete									
Influence of concrete strength class: $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$									
Temperature range I to III :	ψc	[-]	1,0						

Table C18: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load for seismic performance category C1

Threaded rod, HAS-U, HIT-V, AM	M10	M12	M16	M20	M24	M27	M30		
For a working life of 50 and 100 years									
Annular gap factor without Hilti filling set	lphagap	[-]	-] 0,5						
Annular gap factor with Hilti filling set	αgap	[-]	1,0						
Steel failure without lever arm									
Characteristic resistance	$V_{Rk,s,C1}$	[kN]			0,3	5 · A _s ·	fuk		

Injection System Hilti HIT-HY 200-R V3	
Performances	Annex C17
Essential characteristics under tension and shear load	
for seismic performance category C1	

Table C19: Essential characteristics for Hilti tension anchor HZA, HZA-R under tension load for seismic performance category C1

Hilti tension anchor H	ZA, HZA-R			M12	M16	M20	M24	M27	
For a working life of 5	0 and 100 year	's							
Steel failure									
Characteristic resistance	HZA	$N_{Rk,s,C1}$	[kN]	46	86	135	194	253	
Characteristic resistance	HZA-R	N _{Rk,s,C1}	[kN]	62	111	173	248	1)	
Partial factor		γMs,N,C1 ²⁾	[-]			1,4			
Combined pull-out and concrete cone failure									
Diameter of rebar		d	[mm]	12	16	20	25	28	
Characteristic bond resis	stance in cracked	d concrete C20/25							
Temperature range I:	40°C / 24°C	$\tau_{Rk,C1} = \tau_{Rk,100,C1}$	[N/mm²]			6,1			
Temperature range II:	80°C / 50°C	$\tau_{Rk,C1} = \tau_{Rk,100,C1}$	[N/mm²]			4,8			
Temperature range III:	120°C / 72°C	$\tau_{Rk,C1} = \tau_{Rk,100,C1}$	[N/mm²]			4,4			
Influence factors ψ on bond resistance $\tau_{Rk,C1}$ and $\tau_{Rk,100,C1}$ in cracked concrete									
Influence of concrete strength class: $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$									
Temperature range I to	III:	ψc	[-]			1,0			

¹⁾ No performance assessed.

Table C20: Essential characteristics for Hilti tension anchor HZA, HZA-R under shear load for seismic performance category C1

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
For a working life of 50 and 100 years							
Annular gap factor without Hilti filling set	αgap	[-]			0,5		
Steel failure without lever arm							
Characteristic resistance HZA	V _{Rk,s,C1}	[kN]	16	30	47	68	88
Characteristic resistance HZA-R	V _{Rk,s,C1}	[kN]	22	39	60	124	1)
Partial factor	γMs,V,C1 ²⁾	[-]			1,5		

¹⁾ No performance assessed.

Injection System Hilti HIT-HY 200-R V3	
Performances	Annex C18
Essential characteristics under tension and shear load	
for seismic performance category C1	

²⁾ In absence of national regulations.

²⁾ In absence of national regulations.

Table C21: Essential characteristics for rebar under tension load for seismic performance category C1

Rebar				ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
For a working life of 50 and	100 y	ears									,	•	
Steel failure													
Characteristic resistance		N _{Rk,s,C1}	[kN]					As ·	fuk ¹⁾				
Characteristic resistance for r B500B according to DIN 488-		N _{Rk,s,C1}	[kN]	43	62	85	111	173	270	292	339	388	442
Combined pull-out and concrete cone failure													
Diameter of rebar		d	[mm]	10	12	14	16	20	25	26	28	30	32
Characteristic bond resista	nce in	cracked	concret	e C20)/25								
Temperature range I: 40°C/24°C	TRk,C1 =	TRk,100,C1	[N/mm²]	4,4					6,1				
Temperature range II: 80°C/50°C	TRk,C1 =	TRk,100,C1	[N/mm²]	3,5					4,8				
Temperature range III: 120°C/72°C	TRk,C1 =	TRk,100,C1	[N/mm²]	3	3 4,4								
Influence factors ψ on bond resistance $\tau_{Rk,C1}$ and $\tau_{Rk,100,C1}$ in cracked concrete													
Influence of concrete strength class: $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$													
Temperature range I to III : ψ _c [-] 1,0													

f_{uk} according to rebar specification

Table C22: Essential characteristics for rebar under shear loads for seismic performance category C1

Rebar			ф 10	ф 12	ф 14	ф 16	ф 20	φ 25	ф 26	ф 28	ф 30	ф 32
For a working life of 50 and 100 years												
Annular gap factor without Hilti filling set	$lpha_{\sf gap}$	[-]					0	,5				
Steel failure without lever arm												
Characteristic resistance	$V_{Rk,s,C1}$	[kN]				0	,35 · <i>A</i>	∆ _s ⋅ f _{ul}	⁽¹⁾			
Characteristic resistance for rebar B500B according to DIN 488-1	V _{Rk,s,C1}	[kN]	15	22	29	39	60	95	102	118	135	155

f_{uk} according to rebar specification

Injection System Hilti HIT-HY 200-R V3	
Performances Essential characteristics under tension and shear load	Annex C19

Table C23: Essential characteristics for threaded rod, HAS-U-..., HIT-V... and AM 8.8 under tension load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8		M16	M20	M24					
For a working life of 50 and 100 years									
Steel failure									
Characteristic resistance HAS-U (-8.8, -8.8 HDG, A4, HCR), HIT-V (-8.8, -8.8 F, -,R, HCR), AM (8.8, 8.8 HDG) Threaded rod (electroplated zinc coated 8.8 and CRC III, V, Table A1) As · fuk									
Combined pullout and concrete cone failure									
Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes and hammer drilled holes with Hilti		bit TE-CD o	r TE-YD						
Temperature range I: 40 °C/24 °C τ _{Rk,C2} = τ _{Rk,100,C2}	[N/mm ²]	3,9	4,3	3,5					
Temperature range II: 80 °C/50 °C	[N/mm ²]	3,3	3,7	2,9					
Temperature range III: 120 °C/72 °C τ _{Rk,C2} = τ _{Rk,100,C2}	[N/mm ²]	2,8	3,2	2,5					
Influence factors ψ on bond resistance $\tau_{Rk,C2}$ and $\tau_{Rk,100,C2}$ in cracked concrete									
Influence of concrete strength class: $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_{C}$									
Temperature range I to III: ψc	[-]		1,0						

Table C24: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8			M16	M20	M24
For a working life of 50 and 100 years					
Annular gap factor without Hilti filling set	$lpha_{ extsf{gap}}$	[-]		0,5	
Annular gap factor with Hilti filling set	$lpha_{\sf gap}$	[-]		1,0	
Steel failure without lever arm with Hilti Filling So	et				
Characteristic resistance					
HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	46	77	103
Steel failure without lever arm without Hilti Filling	g Set				
Characteristic resistance					
HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	40	71	90
HAS-U A4, HIT-V-R	$V_{Rk,s,C2}$	[kN]	35	62	79
HAS-U-HCR, HIT-V-HCR	$V_{Rk,s,C2}$	[kN]	40	71	79
HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8	$V_{Rk,s,C2}$	[kN]	30	46	66
Threaded rod, electroplated zinc coated 8.8	$V_{Rk,s,C2}$	[kN]	28	50	63
Threaded rod CRC III (Table A1)	$V_{\text{Rk},s,\text{C2}}$	[kN]	25	43	55
Threaded rod CRC V (Table A1)	$V_{Rk,s,C2}$	[kN]	28	50	55

Injection System Hilti HIT-HY 200-R V3	
Performances	Annex C20
Essential characteristics under tension and shear load	
for seismic performance category C2	

Table C25: Displacements under tension load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8		M16	M20	M24
Displacement DLS, HAS-U (-8.8, -8.8 HDG, A4, HCR), HIT-V (-8.8, -8.8 F, -,R, HCR), AM (8.8, 8.8 HDG), Threaded rod (electroplated zinc coated 8.8 and CRC III, V, Table A1)	δ _{N,C2(DLS)} [mm]	0,2	0,5	0,4
Displacement ULS, HAS-U (-8.8, -8.8 HDG, A4, HCR), HIT-V (-8.8, -8.8 F, -,R, HCR), AM (8.8, 8.8 HDG), Threaded rod (electroplated zinc coated 8.8 and CRC III, V, Table A1)	δη,c2(ULS) [mm]	0,6	0,8	1,0

Table C26: Displacements under shear load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8		M16	M20	M24		
Installation with Hilti Filling Set						
Displacement DLS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{V,C2(DLS)}$ [mm]	1,2	1,4	1,1		
Displacement ULS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{V,C2(ULS)}$ [mm]	3,2	3,8	2,6		
Installation without Hilti Filling Set						
Displacement DLS, HAS-U (-8.8, A4, HCR), HIT-V (-8.8, -R, HCR), AM 8.8, Threaded rod (electroplated zinc coated 8.8 and CRC III, V, Table A1)	δv,c2(DLS) [mm]	3,2	2,5	3,5		
Displacement DLS, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8	$\delta_{V,C2(DLS)}$ [mm]	2,3	3,8	3,7		
Displacement ULS, HAS-U (-8.8, A4, HCR), HIT-V (-8.8, -R, HCR), AM 8.8, sThreaded rod (electroplated zinc coated 8.8 and CRC III, V, Table A1)	δv,c2(ULS) [mm]	9,2	7,1	10,2		
Displacement ULS, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8	$\delta_{V,C2(ULS)}$ [mm]	4,3	9,1	8,4		

Injection System Hilti HIT-HY 200-R V3	
Performances Displacements for seismic performance category C2	Annex C21

British Board of Agrément, 1st Floor Building 3, Hatters Lane, Croxley Park Watford **WD18 8YG**